Part Number Hot Search : 
CEM9936 W8511HI AD1139K TA735 00007 APT60 GL341J TA1270
Product Description
Full Text Search
 

To Download K61P256M120SF3 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  K61P256M120SF3 k61 sub-family data sheet supports the following: mk61fx512vmj12, mk61fn1m0vmj12 features ? operating characteristics C voltage range: 1.71 to 3.6 v C flash write voltage range: 1.71 to 3.6 v C temperature range (ambient): -40 to 105c ? performance C up to 120 mhz arm cortex-m4 core with dsp instructions delivering 1.25 dhrystone mips per mhz ? memories and memory interfaces C up to 1024 kb program flash memory on non- flexmemory devices C up to 512 kb program flash memory on flexmemory devices C up to 512 kb flexnvm on flexmemory devices C 16 kb flexram on flexmemory devices C up to 128 kb ram C serial programming interface (ezport) C flexbus external bus interface C ddr controller interface C nand flash controller interface ? clocks C 3 to 32 mhz crystal oscillator C 32 khz crystal oscillator C multi-purpose clock generator ? system peripherals C 10 low-power modes to provide power optimization based on application requirements C memory protection unit with multi-master protection C 32-channel dma controller, supporting up to 128 request sources C external watchdog monitor C software watchdog C low-leakage wakeup unit ? security and integrity modules C hardware crc module to support fast cyclic redundancy checks C tamper detect and secure storage C hardware random-number generator C hardware encryption supporting des, 3des, aes, md5, sha-1, and sha-256 algorithms C 128-bit unique identification (id) number per chip ? human-machine interface C low-power hardware touch sensor interface (tsi) C general-purpose input/output ? analog modules C four 16-bit sar adcs C programmable gain amplifier (pga) (up to x64) integrated into each adc C two 12-bit dacs C four analog comparators (cmp) containing a 6-bit dac and programmable reference input C voltage reference ? timers C programmable delay block C two 8-channel motor control/general purpose/pwm timers C two 2-channel quadrature decoder/general purpose timers C ieee 1588 timers C periodic interrupt timers C 16-bit low-power timer C carrier modulator transmitter C real-time clock freescale semiconductor document number: K61P256M120SF3 data sheet: advance information rev. 3, 2/2012 this document contains information on a new product. specifications and information herein are subject to change without notice. ? 2012 freescale semiconductor, inc. preliminary
? communication interfaces C ethernet controller with mii and rmii interface to external phy and hardware ieee 1588 capability C usb high-/full-/low-speed on-the-go controller with ulpi interface C usb full-/low-speed on-the-go controller with on-chip transceiver C two controller area network (can) modules C three spi modules C two i2c modules C six uart modules C secure digital host controller (sdhc) C two i2s modules k61 sub-family data sheet data sheet, rev. 3, 2/2012. 2 preliminary freescale semiconductor, inc.
table of contents 1 ordering parts ........................................................................... 5 1.1 determining valid orderable parts...................................... 5 2 part identification ...................................................................... 5 2.1 description......................................................................... 5 2.2 format ............................................................................... 5 2.3 fields ................................................................................. 5 2.4 example ............................................................................ 6 3 terminology and guidelines ...................................................... 6 3.1 definition: operating requirement...................................... 6 3.2 definition: operating behavior ........................................... 6 3.3 definition: attribute ............................................................ 7 3.4 definition: rating ............................................................... 7 3.5 result of exceeding a rating .............................................. 8 3.6 relationship between ratings and operating requirements...................................................................... 8 3.7 guidelines for ratings and operating requirements............ 8 3.8 definition: typical value..................................................... 9 3.9 typical value conditions .................................................... 10 4 ratings ...................................................................................... 10 4.1 thermal handling ratings ................................................... 10 4.2 moisture handling ratings .................................................. 11 4.3 esd handling ratings ......................................................... 11 4.4 voltage and current operating ratings ............................... 11 5 general ..................................................................................... 12 5.1 ac electrical characteristics .............................................. 12 5.2 nonswitching electrical specifications ............................... 13 5.2.1 voltage and current operating requirements ...... 13 5.2.2 lvd and por operating requirements ............... 15 5.2.3 voltage and current operating behaviors ............ 16 5.2.4 power mode transition operating behaviors ....... 18 5.2.5 power consumption operating behaviors............ 19 5.2.6 emc radiated emissions operating behaviors .... 22 5.2.7 designing with radiated emissions in mind ......... 23 5.2.8 capacitance attributes ........................................ 23 5.3 switching specifications..................................................... 23 5.3.1 device clock specifications ................................. 23 5.3.2 general switching specifications......................... 24 5.4 thermal specifications ....................................................... 25 5.4.1 thermal operating requirements......................... 25 5.4.2 thermal attributes ............................................... 26 6 peripheral operating requirements and behaviors .................... 26 6.1 core modules .................................................................... 26 6.1.1 debug trace timing specifications ....................... 27 6.1.2 jtag electricals.................................................. 27 6.2 system modules ................................................................ 30 6.3 clock modules ................................................................... 30 6.3.1 mcg specifications ............................................. 30 6.3.2 oscillator electrical specifications ....................... 32 6.3.3 32khz oscillator electrical characteristics ......... 34 6.4 memories and memory interfaces ..................................... 35 6.4.1 flash (ftfe) electrical specifications ................. 35 6.4.2 ezport switching specifications ......................... 38 6.4.3 nfc specifications .............................................. 39 6.4.4 ddr controller specifications.............................. 42 6.4.5 flexbus switching specifications........................ 45 6.5 security and integrity modules .......................................... 48 6.5.1 dryice tamper electrical specifications ............. 48 6.6 analog ............................................................................... 49 6.6.1 adc electrical specifications .............................. 50 6.6.2 cmp and 6-bit dac electrical specifications ...... 58 6.6.3 12-bit dac electrical characteristics ................... 60 6.6.4 voltage reference electrical specifications.......... 63 6.7 timers................................................................................ 64 6.8 communication interfaces ................................................. 64 6.8.1 ethernet switching specifications ........................ 64 6.8.2 usb electrical specifications............................... 66 6.8.3 usb dcd electrical specifications ...................... 66 6.8.4 usb vreg electrical specifications ................... 67 6.8.5 ulpi timing specifications................................... 67 6.8.6 can switching specifications .............................. 68 6.8.7 dspi switching specifications (limited voltage range) ................................................................. 69 6.8.8 dspi switching specifications (full voltage range) ................................................................. 70 6.8.9 i2c switching specifications ................................ 72 6.8.10 uart switching specifications............................ 72 6.8.11 sdhc specifications ........................................... 72 6.8.12 i2s/sai switching specifications ........................ 73 k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 3
6.9 human-machine interfaces (hmi)...................................... 75 6.9.1 tsi electrical specifications ................................ 75 7 dimensions ............................................................................... 76 7.1 obtaining package dimensions ......................................... 77 8 pinout ........................................................................................ 77 8.1 k61 signal multiplexing and pin assignments .................. 77 8.2 k61 pinouts ....................................................................... 87 9 revision history ........................................................................ 88 k61 sub-family data sheet data sheet, rev. 3, 2/2012. 4 preliminary freescale semiconductor, inc.
1 ordering parts 1.1 determining valid orderable parts valid orderable part numbers are provided on the web. to determine the orderable part numbers for this device, go to http://www.freescale.com and perform a part number search for the following device numbers: pk61 and mk61. 2 part identification 2.1 description part numbers for the chip have fields that identify the specific part. you can use the values of these fields to determine the specific part you have received. 2.2 format part numbers for this device have the following format: q k## a m fff t pp cc n 2.3 fields this table lists the possible values for each field in the part number (not all combinations are valid): field description values q qualification status ? m = fully qualified, general market flow ? p = prequalification k## kinetis family ? k61 a key attribute ? d = cortex-m4 w/ dsp ? f = cortex-m4 w/ dsp and fpu m flash memory type ? n = program flash only ? x = program flash and flexmemory table continues on the next page... ordering parts k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 5
field description values fff program flash memory size ? 32 = 32 kb ? 64 = 64 kb ? 128 = 128 kb ? 256 = 256 kb ? 512 = 512 kb ? 1m0 = 1 mb t temperature range (c) ? v = C40 to 105 ? c = C40 to 85 pp package identifier ? mj = 256 mapbga (17 mm x 17 mm) cc maximum cpu frequency (mhz) ? 12 = 120 mhz n packaging type ? r = tape and reel ? (blank) = trays 2.4 example this is an example part number: mk61fn1m0vmj12 3 terminology and guidelines 3.1 definition: operating requirement an operating requirement is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip. 3.1.1 example this is an example of an operating requirement, which you must meet for the accompanying operating behaviors to be guaranteed: symbol description min. max. unit v dd 1.0 v core supply voltage 0.9 1.1 v terminology and guidelines k61 sub-family data sheet data sheet, rev. 3, 2/2012. 6 preliminary freescale semiconductor, inc.
3.2 definition: operating behavior an operating behavior is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions. 3.2.1 example this is an example of an operating behavior, which is guaranteed if you meet the accompanying operating requirements: symbol description min. max. unit i wp digital i/o weak pullup/ pulldown current 10 130 a 3.3 definition: attribute an attribute is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements. 3.3.1 example this is an example of an attribute: symbol description min. max. unit cin_d input capacitance: digital pins 7 pf 3.4 definition: rating a rating is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure: ? operating ratings apply during operation of the chip. ? handling ratings apply when the chip is not powered. terminology and guidelines k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 7
3.4.1 example this is an example of an operating rating: symbol description min. max. unit v dd 1.0 v core supply voltage C0.3 1.2 v 3.5 result of exceeding a rating 40 30 20 10 0 measured characteristic operating rating failures in time (ppm) the likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings. 3.6 relationship between ratings and operating requirements C - no permanent failure - correct operation normal operating range limited operating range - no permanent failure - possible decreased life - possible incorrect operation fatal range - probable permanent failure limited operating range - no permanent failure - possible decreased life - possible incorrect operation handling range - no permanent failure fatal range - probable permanent failure operating or handling rating (max.) operating requirement (max.) operating requirement (min.) operating or handling rating (min.) 3.7 guidelines for ratings and operating requirements follow these guidelines for ratings and operating requirements: ? never exceed any of the chips ratings. terminology and guidelines k61 sub-family data sheet data sheet, rev. 3, 2/2012. 8 preliminary freescale semiconductor, inc.
? during normal operation, dont exceed any of the chips operating requirements. ? if you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible. 3.8 definition: typical value a typical value is a specified value for a technical characteristic that: ? lies within the range of values specified by the operating behavior ? given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions typical values are provided as design guidelines and are neither tested nor guaranteed. 3.8.1 example 1 this is an example of an operating behavior that includes a typical value: symbol description min. typ. max. unit i wp digital i/o weak pullup/pulldown current 10 70 130 a 3.8.2 example 2 this is an example of a chart that shows typical values for various voltage and temperature conditions: terminology and guidelines k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 9
0.90 0.95 1.00 1.05 1.10 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 150 c 105 c 25 c C40 c v dd (v) i (a) dd_stop t j 3.9 typical value conditions typical values assume you meet the following conditions (or other conditions as specified): symbol description value unit t a ambient temperature 25 c v dd 3.3 v supply voltage 3.3 v 4 ratings 4.1 thermal handling ratings symbol description min. max. unit notes t stg storage temperature C55 150 c 1 t sdr solder temperature, lead-free 260 c 2 1. determined according to jedec standard jesd22-a103, high temperature storage life . 2. determined according to ipc/jedec standard j-std-020, moisture/reflow sensitivity classification for nonhermetic solid state surface mount devices . ratings k61 sub-family data sheet data sheet, rev. 3, 2/2012. 10 preliminary freescale semiconductor, inc.
4.2 moisture handling ratings symbol description min. max. unit notes msl moisture sensitivity level 3 1 1. determined according to ipc/jedec standard j-std-020, moisture/reflow sensitivity classification for nonhermetic solid state surface mount devices . 4.3 esd handling ratings symbol description min. max. unit notes v hbm electrostatic discharge voltage, human body model -2000 +2000 v 1 v cdm electrostatic discharge voltage, charged-device model -500 +500 v 2 i lat latch-up current at ambient temperature of 105c -100 +100 ma 1. determined according to jedec standard jesd22-a114, electrostatic discharge (esd) sensitivity testing human body model (hbm) . 2. determined according to jedec standard jesd22-c101, field-induced charged-device model test method for electrostatic-discharge-withstand thresholds of microelectronic components . 4.4 voltage and current operating ratings symbol description min. max. unit v dd digital supply voltage 1 C0.3 3.8 v v dd_int core supply voltage C0.3 3.8 v v dd_ddr ddr i/o supply voltage C0.3 3.8 v i dd digital supply current 300 ma i dd_int core supply current 185 ma i dd_ddr ddr supply current 220 ma v dio digital input voltage (except reset, extal0/xtal0, and extal1/xtal1) 2 C0.3 5.5 v v dtamper tamper input voltage C0.3 v bat + 0.3 v v dddr ddr input voltage C0.3 v dd_ddr + 0.3 v v aio analog 3 , reset, extal0/xtal0, and extal1/xtal1 input voltage C0.3 v dd + 0.3 v table continues on the next page... ratings k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 11
symbol description min. max. unit i d instantaneous maximum current single pin limit (applies to all digital pins except tamper and ddr pins) C25 25 ma i d_ddr instananeous maximum current single pin limit (applies to ddr pins) tbd tbd ma i d_tamper instananeous maximum current single pin limit (applies to tamper pins) tbd tbd ma v dda analog supply voltage v dd C 0.3 v dd + 0.3 v v usb_dp usb_dp input voltage C0.3 3.63 v v usb_dm usb_dm input voltage C0.3 3.63 v vregin usb regulator input C0.3 6.0 v v bat rtc battery supply voltage C0.3 3.8 v 1. it applies for all port pins except tamper pins. 2. it covers digital pins except tamper pins and ddr pins. 3. analog pins are defined as pins that do not have an associated general purpose i/o port function. 5 general 5.1 ac electrical characteristics unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure. figure 1. input signal measurement reference all digital i/o switching characteristics assume: 1. output pins ? have c l =30pf loads, ? are configured for fast slew rate (portx_pcrn[sre]=0), and ? are configured for high drive strength (portx_pcrn[dse]=1) 2. input pins ? have their passive filter disabled (portx_pcrn[pfe]=0) general k61 sub-family data sheet data sheet, rev. 3, 2/2012. 12 preliminary freescale semiconductor, inc.
5.2 nonswitching electrical specifications 5.2.1 voltage and current operating requirements table 1. voltage and current operating requirements symbol description min. max. unit notes v dd supply voltage max(v dd_dd r ,1.71) 3.6 v v dd_int core supply voltage 1.71 v dd v v dd_ddr ddr voltage memory i/o buffers ? ddr1 ? ddr2/lpddr 2.3 1.7 2.7 1.9 v v v ref_ddr input reference voltage (ddr1/ddr2) 0.49 v dd_ddr 0.51 v dd_ddr v v dda analog supply voltage 1.71 3.6 v v dd C v dda v dd -to-v dda differential voltage C0.1 0.1 v v ss C v ssa v ss -to-v ssa differential voltage C0.1 0.1 v v bat rtc battery supply voltage 1.71 3.6 v v ih input high voltage (digital pins except tamper pins and ddr pins) ? 2.7 v v dd 3.6 v ? 1.7 v v dd 2.7 v 0.7 v dd 0.75 v dd v v v il input low voltage (digital pins except tamper pins and ddr pins) ? 2.7 v v dd 3.6 v ? 1.7 v v dd 2.7 v 0.35 v dd 0.3 v dd v v v ih_ddr input high voltage (ddr pins) ? ddr1 ? ddr2 ? lpddr v ref_ddr + 0.15 v ref_ddr + 0.125 0.7 v dd_ddr v v v table continues on the next page... general k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 13
table 1. voltage and current operating requirements (continued) symbol description min. max. unit notes v il_ddr input low voltage (ddr pins) ? ddr1 ? ddr2 ? lpddr v ref_ddr C 0.15 v ref_ddr C 0.125 0.3 v dd_ddr v v v v ih_tamper tamper input high voltage ? 2.7 v v bat 3.6 v ? 1.7 v v bat 2.7 v 0.7 v bat 0.75 v bat v v v il_tamper tamper input low voltage ? 2.7 v v bat 3.6 v ? 1.7 v v bat 2.7 v 0.35 v bat 0.3 v bat v v v hys input hysteresis (digital pins except tamper pins and ddr pins) 0.06 v dd v v hys_tamper input hysteresis (tamper pins) 0.06 v bat v i icdio digital pin (except tamper pins and ddr pins) negative dc injection current single pin ? v in < v ss -0.3v -5 ma 1 i icdio_ddr ddr pin negative dc injection current -- single pin ? tbd tbd tbd ma i icdio_tamper tamper pin negative dc injection current single pin ? v in < v ss -0.3v ? v in > v bat -0.2 2.0 ma ma i icaio analog 2 , extal0/xtal0, and extal1/xtal1 pin dc injection current single pin ? v in < v ss -0.3v (negative current injection) ? v in > v dd +0.3v (positive current injection) -5 +5 ma 3 i iccont contiguous pin dc injection current regional limit, includes sum of negative injection currents or sum of positive injection currents of 16 contiguous pins ? negative current injection ? positive current injection -25 +25 ma v ram v dd (v dd_int ) voltage required to retain ram 1.2 v v rfvbat v bat voltage required to retain the vbat register file v por_vbat v 1. all 5 v tolerant digital i/o pins are internally clamped to v ss through a esd protection diode. there is no diode connection to v dd . if v in greater than v dio_min (=v ss -0.3v) is observed, then there is no need to provide current limiting resistors at general k61 sub-family data sheet data sheet, rev. 3, 2/2012. 14 preliminary freescale semiconductor, inc.
the pads. if this limit cannot be observed then a current limiting resistor is required. the negative dc injection current limiting resistor is calculated as r=(v dio_min -v in )/|i ic |. 2. analog pins are defined as pins that do not have an associated general purpose i/o port function. 3. all analog pins are internally clamped to v ss and v dd through esd protection diodes. if v in is greater than v aio_min (=v ss -0.3v) and v in is less than v aio_max (=v dd +0.3v) is observed, then there is no need to provide current limiting resistors at the pads. if these limits cannot be observed then a current limiting resistor is required. the negative dc injection current limiting resistor is calculated as r=(v aio_min -v in )/|i ic |. the positive injection current limiting resistor is calcualted as r=(v in -v aio_max )/|i ic |. select the larger of these two calculated resistances. 5.2.2 lvd and por operating requirements table 2. lvd and por operating requirements symbol description min. typ. max. unit notes v por falling vdd por detect voltage 0.8 1.1 1.5 v v lvdh falling low-voltage detect threshold high range (lvdv=01) 2.48 2.56 2.64 v v lvw1h v lvw2h v lvw3h v lvw4h low-voltage warning thresholds high range ? level 1 falling (lvwv=00) ? level 2 falling (lvwv=01) ? level 3 falling (lvwv=10) ? level 4 falling (lvwv=11) 2.62 2.72 2.82 2.92 2.70 2.80 2.90 3.00 2.78 2.88 2.98 3.08 v v v v 1 v hysh low-voltage inhibit reset/recover hysteresis high range 80 mv v lvdl falling low-voltage detect threshold low range (lvdv=00) 1.54 1.60 1.66 v v lvw1l v lvw2l v lvw3l v lvw4l low-voltage warning thresholds low range ? level 1 falling (lvwv=00) ? level 2 falling (lvwv=01) ? level 3 falling (lvwv=10) ? level 4 falling (lvwv=11) 1.74 1.84 1.94 2.04 1.80 1.90 2.00 2.10 1.86 1.96 2.06 2.16 v v v v 1 v hysl low-voltage inhibit reset/recover hysteresis low range 60 mv v bg bandgap voltage reference 0.97 1.00 1.03 v t lpo internal low power oscillator period factory trimmed 900 1000 1100 s 1. rising thresholds are falling threshold + hysteresis voltage table 3. vbat power operating requirements symbol description min. typ. max. unit notes v por_vbat falling vbat supply por detect voltage 0.8 1.1 1.5 v general k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 15
5.2.3 voltage and current operating behaviors table 4. voltage and current operating behaviors symbol description min. max. unit notes v oh output high voltage high drive strength ? 2.7 v v dd 3.6 v, i oh = -9ma ? 1.71 v v dd 2.7 v, i oh = -3ma v dd C 0.5 v dd C 0.5 v v output high voltage low drive strength ? 2.7 v v dd 3.6 v, i oh = -2ma ? 1.71 v v dd 2.7 v, i oh = -0.6ma v dd C 0.5 v dd C 0.5 v v i oht output high current total for all ports 100 ma i oht_io60 output high current total for fast digital ports 100 ma v oh_ddr output high voltage for ddr pins ? ddr1 (i oh = -16.2 ma) ? ddr2 half strength (i oh = tbd ma) ? ddr2 full strength (i oh = -13.4 ma) ? lpddr half strength (i oh = -0.1 ma) ? lpddr full strength (i oh = -0.1 ma) v dd_ddr - 0.36 v dd_ddr - 0.28 v dd_ddr - 0.28 0.9 x v dd_ddr 0.9 x v dd_ddr v v v v v i oht_ddr output high current total for ddr pins ? ddr1 ? ddr2 ? lpddr tbd ma v oh_tamper output high voltage high drive strength ? 2.7 v v bat 3.6 v, i oh = -10ma ? 1.71 v v bat 2.7 v, i oh = -3ma v bat C 0.5 v bat C 0.5 v v output high voltage low drive strength ? 2.7 v v bat 3.6 v, i oh = -2ma ? 1.71 v v bat 2.7 v, i oh = -0.6ma v bat C 0.5 v bat C 0.5 v v i oh_tamper output high current total for tamper pins tbd ma table continues on the next page... general k61 sub-family data sheet data sheet, rev. 3, 2/2012. 16 preliminary freescale semiconductor, inc.
table 4. voltage and current operating behaviors (continued) symbol description min. max. unit notes v ol output low voltage high drive strength ? 2.7 v v dd 3.6 v, i ol = 9ma ? 1.71 v v dd 2.7 v, i ol = 3ma 0.5 0.5 v v output low voltage low drive strength ? 2.7 v v dd 3.6 v, i ol = 2ma ? 1.71 v v dd 2.7 v, i ol = 0.6ma 0.5 0.5 v v i olt output low current total for all ports tbd ma i olt_io60 output low current total for fast digital ports tbd ma v ol_ddr output low voltage for ddr pins ? ddr1 (i ol = 16.2 ma) ? ddr2 half strength (i ol = tbd ma) ? ddr2 full strength (i ol = 13.4 ma) ? lpddr half strength (i ol = 0.1 ma) ? lpddr full strength (i ol = 0.1 ma) 0.37 0.28 0.28 0.1 x v dd_ddr 0.1 x v dd_ddr v v v v v i olt_ddr output low current total for ddr pins ? ddr1 ? ddr2 ? lpddr tbd ma v ol_tamper output low voltage high drive strength ? 2.7 v v bat 3.6 v, i ol = 10ma ? 1.71 v v bat 2.7 v, i ol = 3ma 0.5 0.5 v v output low voltage low drive strength ? 2.7 v v bat 3.6 v, i ol = 2ma ? 1.71 v v bat 2.7 v, i ol = 0.6ma 0.5 0.5 v v i ol_tamper output low current total for tamper pins tbd ma i in input leakage current (per pin) for full temperature range 1 a 1 i in input leakage current (per pin) at 25c 0.025 a 1 i in_ddr input leakage current (per ddr pin) for full temperature range 1 a i in_ddr input leakage current (per ddr pin) at 25c 0.025 a i in_tamper input leakage current (per tamper pin) for full temperature range tbd a i in_tamper input leakage current (per tamper pin) at 25c 0.025 a table continues on the next page... general k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 17
table 4. voltage and current operating behaviors (continued) symbol description min. max. unit notes i oz hi-z (off-state) leakage current (per pin) 1 a i oz_ddr hi-z (off-state) leakage current (per ddr pin) 1 a i oz_tamper hi-z (off-state) leakage current (per tamper pin) 1 a r pu internal pullup resistors 20 50 k 2 r pd internal pulldown resistors 20 50 k 3 r pu_tamper internal pullup resistors (per tamper pin) 20 50 k r pd_tamper internal pulldown resistors (per tamper pin) 20 50 k r odt on-die termination (odt) resistance for ddr2 ? r tt1(eff) - 75 ? r tt2(eff) - 150 60 120 90 180 1. measured at vdd=3.6v 2. measured at v dd supply voltage = v dd min and vinput = v ss 3. measured at v dd supply voltage = v dd min and vinput = v dd 5.2.4 power mode transition operating behaviors all specifications except t por , and vllsx run recovery times in the following table assume this clock configuration: ? cpu and system clocks = fei 100 mhz ? bus clock = 50 mhz ? flexbus clock = 50 mhz ? flash clock = 25 mhz table 5. power mode transition operating behaviors symbol description min. max. unit notes t por after a por event, amount of time from the point v dd reaches 1.71 v to execution of the first instruction across the operating temperature range of the chip. 300 s 1 ? vlls1 run 126 s ? vlls2 run 82 s ? vlls3 run 82 s ? lls run 5.0 s table continues on the next page... general k61 sub-family data sheet data sheet, rev. 3, 2/2012. 18 preliminary freescale semiconductor, inc.
table 5. power mode transition operating behaviors (continued) symbol description min. max. unit notes ? vlps run tbd s ? stop run tbd s 1. normal boot (ftfe_fopt[lpboot]=1) 5.2.5 power consumption operating behaviors table 6. power consumption operating behaviors symbol description min. typ. max. unit notes i dda analog supply current see note ma 1 i dd_run run mode current all peripheral clocks disabled, code executing from flash ? @ 1.8v ? @ 3.0v 65 65 tbd tbd ma ma 2 i dd_run run mode current all peripheral clocks enabled, code executing from flash ? @ 1.8v ? @ 3.0v 95 95 tbd tbd ma ma 3 i dd_wait wait mode high frequency current at 3.0 v all peripheral clocks disabled 37 tbd ma 2 i dd_wait wait mode reduced frequency current at 3.0 v all peripheral clocks disabled 21 tbd ma 4 i dd_stop stop mode current at 3.0 v ? @ C40 to 25c ? @ 70c ? @ 105c tbd tbd tbd tbd tbd tbd ma ma ma i dd_vlpr very-low-power run mode current at 3.0 v all peripheral clocks disabled 2.3 tbd ma 5 i dd_vlpr very-low-power run mode current at 3.0 v all peripheral clocks enabled 3.1 tbd ma 6 i dd_vlpw very-low-power wait mode current at 3.0 v 1.8 tbd ma 7 i dd_vlps very-low-power stop mode current at 3.0 v ? @ C40 to 25c ? @ 70c ? @ 105c 200 tbd tbd tbd tbd tbd a a a table continues on the next page... general k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 19
table 6. power consumption operating behaviors (continued) symbol description min. typ. max. unit notes i dd_lls low leakage stop mode current at 3.0 v ? @ C40 to 25c ? @ 70c ? @ 105c 200 tbd tbd tbd tbd tbd a a a 8 i dd_vlls3 very low-leakage stop mode 3 current at 3.0 v ? @ C40 to 25c ? @ 70c ? @ 105c 6.5 37.4 148.3 tbd tbd tbd a a a #new- reference/ llsramn i dd_vlls2 very low-leakage stop mode 2 current at 3.0 v ? @ C40 to 25c ? @ 70c ? @ 105c 3.4 13.4 58.5 tbd tbd tbd a a a i dd_vlls1 very low-leakage stop mode 1 current at 3.0 v ? @ C40 to 25c ? @ 70c ? @ 105c 2.9 9.8 44.7 tbd tbd tbd a a a i dd_vbat average current when cpu is not accessing rtc registers at 3.0 v ? @ C40 to 25c ? @ 70c ? @ 105c 0.91 1.5 4.3 1.1 1.85 4.3 a a a 9 1. the analog supply current is the sum of the active or disabled current for each of the analog modules on the device. see each module's specification for its supply current. 2. 120 mhz core and system clock, 60 mhz bus, 30 mhz flexbus clock, and 20 mhz flash clock. mcg configured for pee mode. all peripheral clocks disabled. 3. 120 mhz core and system clock, 60 mhz bus, 50 mhz flexbus clock, and 20 mhz flash clock. mcg configured for pee mode. all peripheral clocks enabled, but peripherals are not in active operation. 4. 25 mhz core and system clock, 25 mhz bus clock, and 12.5 mhz flexbus and flash clock. mcg configured for fei mode. 5. 4 mhz core, system, 2 mhz flexbus, and 2 mhz bus clock and 1 mhz flash clock. mcg configured for blpe mode. all peripheral clocks disabled. 6. 4 mhz core, system, 2 mhz flexbus, and 2 mhz bus clock and 1 mhz flash clock. mcg configured for blpe mode. all peripheral clocks disabled. 7. 4 mhz core, system, 2 mhz flexbus, and 2 mhz bus clock and 1 mhz flash clock. mcg configured for blpe mode. all peripheral clocks disabled. 8. data reflects devices with 128 kb of ram. for devices with 64 kb of ram, power consumption is reduced by 2 a. 9. includes 32khz oscillator current and rtc operation. 5.2.5.1 diagram: typical idd_run operating behavior the following data was measured under these conditions: general k61 sub-family data sheet data sheet, rev. 3, 2/2012. 20 preliminary freescale semiconductor, inc.
? mcg in fbe mode for 50 mhz and lower frequencies. mcg in fee mode at greater than 50 mhz frequencies. mcg in pee mode is greater than 100 mhz frequencies. ? usb regulator disabled ? no gpios toggled ? code execution from flash with cache enabled ? for the alloff curve, all peripheral clocks are disabled except ftfl figure 2. run mode supply current vs. core frequency general k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 21
figure 3. vlpr mode supply current vs. core frequency 5.2.6 emc radiated emissions operating behaviors table 7. emc radiated emissions operating behaviors for 256mapbga symbol description frequency band (mhz) typ. unit notes v re1 radiated emissions voltage, band 1 0.15C50 tbd dbv 1 , 2 v re2 radiated emissions voltage, band 2 50C150 tbd dbv v re3 radiated emissions voltage, band 3 150C500 tbd dbv v re4 radiated emissions voltage, band 4 500C1000 tbd dbv v re_iec iec level 0.15C1000 k 2 , 3 1. determined according to iec standard 61967-1, integrated circuits - measurement of electromagnetic emissions, 150 khz to 1 ghz part 1: general conditions and definitions and iec standard 61967-2, integrated circuits - measurement of electromagnetic emissions, 150 khz to 1 ghz part 2: measurement of radiated emissionstem cell and wideband tem cell method . measurements were made while the microcontroller was running basic application code. the reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range. 2. v dd = 3.3 v, t a = 25 c, f osc = 12 mhz (crystal), f sys = 96 mhz, f bus = 48 mhz general k61 sub-family data sheet data sheet, rev. 3, 2/2012. 22 preliminary freescale semiconductor, inc.
3. specified according to annex d of iec standard 61967-2, measurement of radiated emissionstem cell and wideband tem cell method 5.2.7 designing with radiated emissions in mind to find application notes that provide guidance on designing your system to minimize interference from radiated emissions: 1. go to http://www.freescale.com . 2. perform a keyword search for emc design. 5.2.8 capacitance attributes table 8. capacitance attributes symbol description min. max. unit c in_a input capacitance: analog pins 7 pf c in_d input capacitance: digital pins 7 pf c in_d_io60 input capacitance: fast digital pins 9 pf 5.3 switching specifications 5.3.1 device clock specifications table 9. device clock specifications symbol description min. max. unit notes normal run mode f sys system and core clock 120 mhz f sys_usbfs system and core clock when full speed usb in operation 20 mhz f sys_usbhs system and core clock when high speed usb in operation 60 mhz f enet system and core clock when ethernet in operation ? 10 mbps ? 100 mbps 5 50 mhz f bus bus clock 60 mhz fb_clk flexbus clock 50 mhz f flash flash clock 25 mhz table continues on the next page... general k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 23
table 9. device clock specifications (continued) symbol description min. max. unit notes f ddr ddr clock 150 mhz f lptmr lptmr clock 25 mhz vlpr mode 1 f sys system and core clock 4 mhz f bus bus clock 4 mhz fb_clk flexbus clock 4 mhz f flash flash clock 1 mhz f lptmr lptmr clock 4 mhz 1. the frequency limitations in vlpr mode here override any frequency specification listed in the timing specification for any other module. 5.3.2 general switching specifications these general purpose specifications apply to all signals configured for gpio, uart, can, cmt, ieee 1588 timer, and i 2 c signals. table 10. general switching specifications symbol description min. max. unit notes gpio pin interrupt pulse width (digital glitch filter disabled) synchronous path 1.5 bus clock cycles 1 gpio pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) asynchronous path 100 ns 2 gpio pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) asynchronous path 16 ns 2 external reset pulse width (digital glitch filter disabled) 100 ns 2 mode select ( ezp_cs) hold time after reset deassertion 2 bus clock cycles t io50 port rise and fall time (high drive strength) ? slew disabled ? slew enabled tbd tbd ns ns 3 4 t io50 port rise and fall time (low drive strength) ? slew disabled ? slew enabled tbd tbd ns ns 3 4 t io60 port rise and fall time (high drive strength) ? slew disabled ? slew enabled tbd tbd ns ns 3 4 table continues on the next page... general k61 sub-family data sheet data sheet, rev. 3, 2/2012. 24 preliminary freescale semiconductor, inc.
table 10. general switching specifications (continued) symbol description min. max. unit notes t io60 port rise and fall time (low drive strength) ? slew disabled ? slew enabled tbd tbd ns ns 3 4 t tamper port rise and fall time (high drive strength) ? slew disabled ? slew enabled tbd tbd ns ns 5 6 t tamper port rise and fall time (low drive strength) ? slew disabled ? slew enabled tbd tbd ns ns 7 8 t ddr port rise time ? ddr1 ? ddr2 ? lpddr tbd tbd tbd ns ns ns 9 10 11 t ddr port fall time ? ddr1 ? ddr2 ? lpddr tbd tbd tbd ns ns ns 9 10 11 1. the greater synchronous and asynchronous timing must be met. 2. this is the shortest pulse that is guaranteed to be recognized. 3. 25pf load 4. 15pf load 5. 75pf load 6. 15pf load 7. 75pf load 8. 15pf load 9. ddr rise and fall times at 50 transmission line impedance terminated to 0.5 v dd_ddr + 5 pf load. 10. rising slew rate measured between 0.5 v dd_ddr and 0.5 v dd_ddr + 250 mv for all modes. 11. falling slew rate measured between 0.5 v dd_ddr and 0.5 v dd_ddr C 250 mv for all modes. 5.4 thermal specifications 5.4.1 thermal operating requirements table 11. thermal operating requirements symbol description min. max. unit t j die junction temperature C40 125 c t a ambient temperature C40 105 c general k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 25
5.4.2 thermal attributes board type symbol description 256 mapbga unit notes single-layer (1s) r ja thermal resistance, junction to ambient (natural convection) 43 c/w 1 , 2 four-layer (2s2p) r ja thermal resistance, junction to ambient (natural convection) 28 c/w 1 , 2 , 3 single-layer (1s) r jma thermal resistance, junction to ambient (200 ft./ min. air speed) 36 c/w 1 , 3 four-layer (2s2p) r jma thermal resistance, junction to ambient (200 ft./ min. air speed) 25 c/w 1 , 3 r jb thermal resistance, junction to board 17 c/w 4 r jc thermal resistance, junction to case 8 c/w 5 jt thermal characterization parameter, junction to package top outside center (natural convection) 2 c/w 6 1. junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. 2. determined according to jedec standard jesd51-2, integrated circuits thermal test method environmental conditionsnatural convection (still air) with the single layer board horizontal. board meets jesd51-9 specification. 3. determined according to jedec standard jesd51-6, integrated circuits thermal test method environmental conditionsforced convection (moving air) with the board horizontal. 4. determined according to jedec standard jesd51-8, integrated circuit thermal test method environmental conditionsjunction-to-board . board temperature is measured on the top surface of the board near the package. 5. determined according to method 1012.1 of mil-std 883, test method standard, microcircuits , with the cold plate temperature used for the case temperature. the value includes the thermal resistance of the interface material between the top of the package and the cold plate. 6. determined according to jedec standard jesd51-2, integrated circuits thermal test method environmental conditionsnatural convection (still air) . 6 peripheral operating requirements and behaviors peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. 26 preliminary freescale semiconductor, inc.
6.1 core modules 6.1.1 debug trace timing specifications table 12. debug trace operating behaviors symbol description min. max. unit t cyc clock period frequency dependent mhz t wl low pulse width 2 ns t wh high pulse width 2 ns t r clock and data rise time 3 ns t f clock and data fall time 3 ns t s data setup 3 ns t h data hold 2 ns figure 4. trace_clkout specifications th ts ts th trace_clkout trace_d[3:0] figure 5. trace data specifications 6.1.2 jtag electricals table 13. jtag voltage range electricals symbol description min. max. unit operating voltage 2.7 5.5 v j1 tclk frequency of operation ? jtag ? cjtag 10 5 mhz table continues on the next page... peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 27
table 13. jtag voltage range electricals (continued) symbol description min. max. unit j2 tclk cycle period 1/j1 ns j3 tclk clock pulse width ? jtag ? cjtag 100 200 ns ns ns j4 tclk rise and fall times 1 ns j5 tms input data setup time to tclk rise ? jtag ? cjtag 53 112 ns j6 tdi input data setup time to tclk rise 8 ns j7 tms input data hold time after tclk rise ? jtag ? cjtag 3.4 3.4 ns j8 tdi input data hold time after tclk rise 3.4 ns j9 tclk low to tms data valid ? jtag ? cjtag 48 85 ns j10 tclk low to tdo data valid 48 ns j11 output data hold/invalid time after clock edge 1 3 ns 1. they are common for jtag and cjtag. j2 j3 j3 j4 j4 tclk (input) figure 6. test clock input timing peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. 28 preliminary freescale semiconductor, inc.
j7 j8 j7 j5 j6 input data valid output data valid output data valid tclk data inputs data outputs data outputs data outputs figure 7. boundary scan (jtag) timing j11 j12 j11 j9 j10 input data valid output data valid output data valid tclk tdi/tms tdo tdo tdo figure 8. test access port timing peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 29
j14 j13 tclk trst figure 9. trst timing 6.2 system modules there are no specifications necessary for the device's system modules. 6.3 clock modules 6.3.1 mcg specifications table 14. mcg specifications symbol description min. typ. max. unit notes f ints_ft internal reference frequency (slow clock) factory trimmed at nominal vdd and 25 c 32.768 khz f ints_t internal reference frequency (slow clock) user trimmed 31.25 39.0625 khz i ints internal reference (slow clock) current tbd a fdco_res_t resolution of trimmed average dco output frequency at fixed voltage and temperature using sctrim and scftrim 0.3 0.6 %f dco 1 f dco_res_t resolution of trimmed average dco output frequency at fixed voltage and temperature using sctrim only 0.2 0.5 %f dco 1 f dco_t total deviation of trimmed average dco output frequency over voltage and temperature 10 %f dco 1 f dco_t total deviation of trimmed average dco output frequency over fixed voltage and temperature range of 0C70c 4.5 %f dco 1 f intf_ft internal reference frequency (fast clock) factory trimmed at nominal vdd and 25c 4 mhz f intf_t internal reference frequency (fast clock) user trimmed at nominal vdd and 25 c 3 5 mhz i intf internal reference (fast clock) current tbd a table continues on the next page... peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. 30 preliminary freescale semiconductor, inc.
table 14. mcg specifications (continued) symbol description min. typ. max. unit notes f loc_low loss of external clock minimum frequency range = 00 (3/5) x f ints_t khz f loc_high loss of external clock minimum frequency range = 01, 10, or 11 (16/5) x f ints_t khz fll f fll_ref fll reference frequency range 31.25 39.0625 khz f dco dco output frequency range low range (drs=00) 640 f fll_ref 20 20.97 25 mhz 2 , 3 mid range (drs=01) 1280 f fll_ref 40 41.94 50 mhz mid-high range (drs=10) 1920 f fll_ref 60 62.91 75 mhz high range (drs=11) 2560 f fll_ref 80 83.89 100 mhz f dco_t_dmx3 2 dco output frequency low range (drs=00) 732 f fll_ref 23.99 mhz 4 , 5 mid range (drs=01) 1464 f fll_ref 47.97 mhz mid-high range (drs=10) 2197 f fll_ref 71.99 mhz high range (drs=11) 2929 f fll_ref 95.98 mhz j cyc_fll fll period jitter ? f vco = 48 mhz ? f vco = 98 mhz 180 150 ps j acc_fll fll accumulated jitter of dco output over a 1s time window tbd ps t fll_acquire fll target frequency acquisition time 1 ms 6 pll0,1 f pll_ref pll reference frequency range 8 16 mhz f vcoclk_2x vco output frequency 180 360 mhz f vcoclk pll output frequency 90 180 mhz f vcoclk_90 pll quadrature output frequency 90 180 mhz i pll pll operating current (fast) tbd a 7 table continues on the next page... peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 31
table 14. mcg specifications (continued) symbol description min. typ. max. unit notes i pll pll operating current (fast) tbd a 7 t pll_lock lock detector detection time 100 10 -6 + 1075(1/ f pll_ref ) s 8 j cyc_pll jitter (cycle to cycle) 50 tbd ps j acc_pll jitter (accumulated) 500 tbd ps 9 1. this parameter is measured with the internal reference (slow clock) being used as a reference to the fll (fei clock mode). 2. these typical values listed are with the slow internal reference clock (fei) using factory trim and dmx32=0. 3. the resulting system clock frequencies should not exceed their maximum specified values. the dco frequency deviation ( f dco_t ) over voltage and temperature should be considered. 4. these typical values listed are with the slow internal reference clock (fei) using factory trim and dmx32=1. 5. the resulting clock frequency must not exceed the maximum specified clock frequency of the device. 6. this specification applies to any time the fll reference source or reference divider is changed, trim value is changed, dmx32 bit is changed, drs bits are changed, or changing from fll disabled (blpe, blpi) to fll enabled (fei, fee, fbe, fbi). if a crystal/resonator is being used as the reference, this specification assumes it is already running. 7. excludes any oscillator currents that are also consuming power while pll is in operation. 8. this specification applies to any time the pll vco divider or reference divider is changed, or changing from pll disabled (blpe, blpi) to pll enabled (pbe, pee). if a crystal/resonator is being used as the reference, this specification assumes it is already running. 9. accumulated jitter will depend on vco frequency and vdiv. 6.3.2 oscillator electrical specifications this section provides the electrical characteristics of the module. 6.3.2.1 oscillator dc electrical specifications table 15. oscillator dc electrical specifications symbol description min. typ. max. unit notes v dd supply voltage 1.71 3.6 v i ddosc supply current low-power mode (hgo=0) ? 32 khz ? 4 mhz ? 8 mhz (range=01) ? 16 mhz ? 24 mhz ? 32 mhz 500 200 300 950 1.2 1.5 na a a a ma ma 1 table continues on the next page... peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. 32 preliminary freescale semiconductor, inc.
table 15. oscillator dc electrical specifications (continued) symbol description min. typ. max. unit notes i ddosc supply current high gain mode (hgo=1) ? 32 khz ? 4 mhz ? 8 mhz (range=01) ? 16 mhz ? 24 mhz ? 32 mhz 25 400 500 2.5 3 4 a a a ma ma ma 1 c x extal load capacitance 2 , 3 c y xtal load capacitance 2 , 3 r f feedback resistor low-frequency, low-power mode (hgo=0) m 2 , 4 feedback resistor low-frequency, high-gain mode (hgo=1) 10 m feedback resistor high-frequency, low-power mode (hgo=0) m feedback resistor high-frequency, high-gain mode (hgo=1) 1 m r s series resistor low-frequency, low-power mode (hgo=0) k series resistor low-frequency, high-gain mode (hgo=1) 200 k series resistor high-frequency, low-power mode (hgo=0) k series resistor high-frequency, high-gain mode (hgo=1) 0 k v pp 5 peak-to-peak amplitude of oscillation (oscillator mode) low-frequency, low-power mode (hgo=0) 0.6 v peak-to-peak amplitude of oscillation (oscillator mode) low-frequency, high-gain mode (hgo=1) v dd v peak-to-peak amplitude of oscillation (oscillator mode) high-frequency, low-power mode (hgo=0) 0.6 v peak-to-peak amplitude of oscillation (oscillator mode) high-frequency, high-gain mode (hgo=1) v dd v 1. v dd =3.3 v, temperature =25 c 2. see crystal or resonator manufacturer's recommendation 3. c x ,c y can be provided by using either the integrated capacitors or by using external components. 4. when low power mode is selected, r f is integrated and must not be attached externally. peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 33
5. the extal and xtal pins should only be connected to required oscillator components and must not be connected to any other devices. 6.3.2.2 oscillator frequency specifications table 16. oscillator frequency specifications symbol description min. typ. max. unit notes f osc_lo oscillator crystal or resonator frequency low frequency mode (mcg_c2[range]=00) 32 40 khz f osc_hi_1 oscillator crystal or resonator frequency high frequency mode (low range) (mcg_c2[range]=01) 3 8 mhz 1 f osc_hi_2 oscillator crystal or resonator frequency high frequency mode (high range) (mcg_c2[range]=1x) 8 32 mhz f ec_extal input clock frequency (external clock mode) 60 mhz 2 , 3 t dc_extal input clock duty cycle (external clock mode) 40 50 60 % t cst crystal startup time 32 khz low-frequency, low-power mode (hgo=0) 1000 ms 4 , 5 crystal startup time 32 khz low-frequency, high-gain mode (hgo=1) 500 ms crystal startup time 8 mhz high-frequency (mcg_c2[range]=01), low-power mode (hgo=0) 0.6 ms crystal startup time 8 mhz high-frequency (mcg_c2[range]=01), high-gain mode (hgo=1) 1 ms 1. frequencies less than 8 mhz are not in the pll range. 2. other frequency limits may apply when external clock is being used as a reference for the fll or pll. 3. when transitioning from fbe to fei mode, restrict the frequency of the input clock so that, when it is divided by frdiv, it remains within the limits of the dco input clock frequency. 4. proper pc board layout procedures must be followed to achieve specifications. 5. crystal startup time is defined as the time between the oscillator being enabled and the oscinit bit in the mcg_s register being set. 6.3.3 32khz oscillator electrical characteristics this section describes the module electrical characteristics. 6.3.3.1 32khz oscillator dc electrical specifications table 17. 32khz oscillator dc electrical specifications symbol description min. typ. max. unit v bat supply voltage 1.71 3.6 v r f internal feedback resistor 100 m table continues on the next page... peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. 34 preliminary freescale semiconductor, inc.
table 17. 32khz oscillator dc electrical specifications (continued) symbol description min. typ. max. unit c para parasitical capacitance of extal32 and xtal32 5 7 pf v pp 1 peak-to-peak amplitude of oscillation 0.6 v 1. the extal32 and xtal32 pins should only be connected to required oscillator components and must not be connected to any other devices. 6.3.3.2 32khz oscillator frequency specifications table 18. 32khz oscillator frequency specifications symbol description min. typ. max. unit notes f osc_lo oscillator crystal 32.768 khz t start crystal start-up time 1000 ms 1 1. proper pc board layout procedures must be followed to achieve specifications. 6.4 memories and memory interfaces 6.4.1 flash (ftfe) electrical specifications this section describes the electrical characteristics of the ftfe module. 6.4.1.1 flash timing specifications program and erase the following specifications represent the amount of time the internal charge pumps are active and do not include command overhead. table 19. nvm program/erase timing specifications symbol description min. typ. max. unit notes t hvpgm4 program phrase high-voltage time 7.5 tbd s t hversscr erase flash sector high-voltage time 13 tbd ms 1 t hversblk erase flash block high-voltage time 425 tbd ms 1 1. maximum time based on expectations at cycling end-of-life. peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 35
6.4.1.2 flash timing specifications commands table 20. flash command timing specifications symbol description min. typ. max. unit notes t rd1blk read 1s block execution time 1.5 tbd ms t rd1sec4k read 1s section execution time (4kb flash) 50 tbd s 1 t pgmchk program check execution time 35 tbd s 1 t rdrsrc read resource execution time 35 tbd s 1 t pgm8 program phrase execution time 65 tbd s t ersblk erase flash block execution time 450 tbd ms 2 t ersscr erase flash sector execution time 15 tbd ms 2 t pgmsec4k program section execution time (4kb flash) 20 tbd ms t rd1all read 1s all blocks execution time 1.5 tbd ms t rdonce read once execution time 17 tbd s 1 t pgmonce program once execution time 65 tbd s t ersall erase all blocks execution time 900 tbd ms 2 t vfykey verify backdoor access key execution time 25 tbd s 1 t swapx01 t swapx02 t swapx04 t swapx08 swap control execution time ? control code 0x01 ? control code 0x02 ? control code 0x04 ? control code 0x08 185 65 65 25 tbd tbd tbd tbd s s s s t pgmpart program partition for eeprom execution time tbd tbd ms t setram64k t setram128k t setram256k t setram512k set flexram function execution time: ? 64 kb eeprom backup ? 128 kb eeprom backup ? 256 kb eeprom backup ? 512 kb eeprom backup tbd tbd tbd tbd tbd tbd tbd tbd ms ms ms ms t eewr8bers byte-write to erased flexram location execution time 100 tbd s 3 t eewr8b64k t eewr8b128k t eewr8b256k t eewr8b512k byte-write to flexram execution time: ? 64 kb eeprom backup ? 128 kb eeprom backup ? 256 kb eeprom backup ? 512 kb eeprom backup tbd tbd tbd tbd tbd tbd tbd tbd ms ms ms ms t eewr16bers 16-bit write to erased flexram location execution time 100 tbd s table continues on the next page... peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. 36 preliminary freescale semiconductor, inc.
table 20. flash command timing specifications (continued) symbol description min. typ. max. unit notes t eewr16b64k t eewr16b128k t eewr16b256k t eewr16b512k 16-bit write to flexram execution time: ? 64 kb eeprom backup ? 128 kb eeprom backup ? 256 kb eeprom backup ? 512 kb eeprom backup tbd tbd tbd tbd tbd tbd tbd tbd ms ms ms ms t eewr32bers 32-bit write to erased flexram location execution time 200 tbd s t eewr32b64k t eewr32b128k t eewr32b256k t eewr32b512k 32-bit-write to flexram execution time: ? 64 kb eeprom backup ? 128 kb eeprom backup ? 256 kb eeprom backup ? 512 kb eeprom backup tbd tbd tbd tbd tbd tbd tbd tbd ms ms ms ms 1. assumes 25mhz flash clock frequency. 2. maximum times for erase parameters based on expectations at cycling end-of-life. 3. for byte-writes to an erased flexram location, the aligned word containing the byte must be erased. 6.4.1.3 flash (ftfe) current and power specfications table 21. flash (ftfe) current and power specfications symbol description typ. unit i dd_pgm worst case programming current in program flash 10 ma 6.4.1.4 reliability specifications table 22. nvm reliability specifications symbol description min. typ. 1 max. unit notes program flash t nvmretp10k data retention after up to 10 k cycles 5 50 years 2 t nvmretp1k data retention after up to 1 k cycles 10 100 years 2 t nvmretp100 data retention after up to 100 cycles 15 100 years 2 n nvmcycp cycling endurance 10 k 35 k cycles 3 data flash t nvmretd10k data retention after up to 10 k cycles 5 50 years 2 t nvmretd1k data retention after up to 1 k cycles 10 100 years 2 t nvmretd100 data retention after up to 100 cycles 15 100 years 2 n nvmcycd cycling endurance 10 k 35 k cycles 3 table continues on the next page... peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 37
table 22. nvm reliability specifications (continued) symbol description min. typ. 1 max. unit notes flexram as eeprom t nvmretee100 data retention up to 100% of write endurance 5 50 years 2 t nvmretee10 data retention up to 10% of write endurance 10 100 years 2 t nvmretee1 data retention up to 1% of write endurance 15 100 years 2 n nvmwree16 n nvmwree128 n nvmwree512 n nvmwree4k n nvmwree32k write endurance ? eeprom backup to flexram ratio = 16 ? eeprom backup to flexram ratio = 128 ? eeprom backup to flexram ratio = 512 ? eeprom backup to flexram ratio = 4096 ? eeprom backup to flexram ratio = 32,768 tbd tbd tbd tbd tbd tbd tbd tbd tbd tbd writes writes writes writes writes 4 1. typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25c profile. engineering bulletin eb618 does not apply to this technology. 2. data retention is based on t javg = 55c (temperature profile over the lifetime of the application). 3. cycling endurance represents number of program/erase cycles at -40c t j 125c. 4. write endurance represents the number of writes to each flexram location at -40c tj 125c influenced by the cycling endurance of the flexnvm (same value as data flash) and the allocated eeprom backup per subsystem. minimum and typical values assume all byte-writes to flexram. 6.4.1.5 write endurance to flexram for eeprom tbd 6.4.2 ezport switching specifications table 23. ezport switching specifications num description min. max. unit operating voltage 1.71 3.6 v ep1 ezp_ck frequency of operation (all commands except read) f sys /2 mhz ep1a ezp_ck frequency of operation (read command) f sys /8 mhz ep2 ezp_cs negation to next ezp_cs assertion 2 x t ezp_ck ns ep3 ezp_cs input valid to ezp_ck high (setup) 5 ns ep4 ezp_ck high to ezp_cs input invalid (hold) 5 ns ep5 ezp_d input valid to ezp_ck high (setup) 2 ns ep6 ezp_ck high to ezp_d input invalid (hold) 5 ns ep7 ezp_ck low to ezp_q output valid 16 ns table continues on the next page... peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. 38 preliminary freescale semiconductor, inc.
table 23. ezport switching specifications (continued) num description min. max. unit ep8 ezp_ck low to ezp_q output invalid (hold) 0 ns ep9 ezp_cs negation to ezp_q tri-state 12 ns ep2 ep3 ep4 ep5 ep6 ep7 ep8 ep9 ezp_ck ezp_cs ezp_q (output) ezp_d (input) figure 10. ezport timing diagram 6.4.3 nfc specifications the nand flash controller (nfc) implements the interface to standard nand flash memory devices. this section describes the timing parameters of the nfc. in the following table: ? t h is the flash clock high time and ? t l is flash clock low time, which are defined as: input clock t scaler = nfc t = h t l t + the scaler value is derived from the fractional divider specified in the sim's clkdiv4 register: scaler = sim_clkdiv4[nfcfrac] + 1 sim_clkdiv4[nfcdiv] + 1 peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 39
in case the reciprocal of scaler is an integer, the duty cycle of nfc clock is 50%, means t h = t l . in case the reciprocal of scaler is not an integer: (1 + scaler / 2) x = l t nfc t 2 (1 C scaler / 2) x = h t nfc t 2 for example, if scaler is 0.2, then t h = t l = t nfc /2. t nfc t h t l however, if scaler is 0.667, then t l = 2/3 x t nfc and t h = 1/3 x t nfc . t nfc t h t l note the reciprocal of scaler must be a multiple of 0.5. for example, 1, 1.5, 2, 2.5, etc. table 24. nfc specifications num description min. max. unit t cls nfc_cle setup time 2t h + t l C 1 ns t clh nfc_cle hold time t h + t l C 1 ns t cs nfc_cen setup time 2t h + t l C 1 ns t ch nfc_cen hold time t h + t l ns t wp nfc_wp pulse width t l C 1 ns t als nfc_ale setup time 2t h + t l ns t alh nfc_ale hold time t h + t l ns t ds data setup time t l C 1 ns t dh data hold time t h C 1 ns t wc write cycle time t h + t l C 1 ns t wh nfc_we hold time t h C 1 ns t rr ready to nfc_re low 4t h + 3t l + 90 ns t rp nfc_re pulse width t l + 1 ns table continues on the next page... peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. 40 preliminary freescale semiconductor, inc.
table 24. nfc specifications (continued) num description min. max. unit t rc read cycle time t l + t h C 1 ns t reh nfc_re high hold time t h C 1 ns t is data input setup time 11 ns tcs tchtwp tds tdh tcls tclh nfc_cle nfc_cen nfc_we nfc_ion figure 11. command latch cycle timing tcs tchtwp tds tdh tals talh address nfc_ale nfc_cen nfc_we nfc_ion figure 12. address latch cycle timing tcs tch twp tds tdh data data data twc twh nfc_cen nfc_we nfc_ion figure 13. write data latch cycle timing peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 41
tch trp data data data trc treh tis trr nfc_cen nfc_re nfc_ion nfc_rb figure 14. read data latch cycle timing in non-fast mode tch trp data data data trc treh tis trr nfc_cen nfc_re nfc_ion nfc_rb figure 15. read data latch cycle timing in fast mode 6.4.4 ddr controller specifications the following timing numbers must be followed to properly latch or drive data onto the ddr memory bus. all timing numbers are relative to the dqs byte lanes. table 25. ddr controller ac timing specifications symbol description min. max. unit notes frequency of operation ? ddr1 ? ddr2 ? lpddr 83.3 125 1 50 150 150 150 mhz mhz mhz 2 table continues on the next page... peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. 42 preliminary freescale semiconductor, inc.
table 25. ddr controller ac timing specifications (continued) symbol description min. max. unit notes t ddrck clock period ? ddr1 ? ddr2 ? lpddr 6.6 6.6 6.6 12 8 20 ns ns ns v ox-ac ddrck ac differential cross point voltage ? ddr1 ? ddr2 ? lpddr 0.5 x v dd_ddr C 0.2 v 0.5 x v dd_ddr C 0.125 v 0.4 x v dd_ddr 0.5 x v dd_ddr + 0.2 v 0.5 x v dd_ddr + 0.125 v 0.4 x v dd_ddr v v v t ddrckh pulse width high 0.45 0.55 t ddrck 3 t ddrckl pulse width low 0.45 0.55 t ddrck 3 t cmv address, ddr_cke, ddr_cas, ddr_ras, ddr_we, ddr_csn output valid 0.5 x t ddrck C 1 ns 4 t cmh address, ddr_cke, ddr_cas, ddr_ras, ddr_we, ddr_csn output hold 0.5 x t ddrck C 1 ns t dqss write command to first dqs latching transition wl C 0.2 x t ddrck wl + 0.2 x t ddrck ns t qs data and data mask output setup (dq dqs) relative to dqs (ddr write mode) 0.25 x t ddrck C 1 ns 5 , 6 t qh data and data mask output hold (dqs dq) relative to dqs (ddr write mode) 0.25 x t ddrck C 1 ns 7 t dqsq dqs-dq skew for dqs and associated dq signals C (0.25 x t ddrck C 1) 0.25 x t ddrck C 1 ns 8 1. this is minimum frequency of operation according to jedec ddr2 specification. 2. ddr data rate = 2 x ddr clock frequency 3. pulse width high plus pulse width low cannot exceed min and max clock period. 4. command output valid should be 1/2 the memory bus clock (t ddrck ) plus some minor adjustments for process, temperature, and voltage variations. 5. this specification relates to the required input setup time of ddr memories. the microprocessor's output setup should be larger than the input setup of the ddr memories. if it is not larger, then the input setup on the memory is in violation. ddr_dq[15:8] is relative to ddr_dqs[1]; ddr_dq[7:0] is relative to ddr_dqs[0]. 6. the first data beat is valid before the first rising edge of dqs and after the dqs write preamble. the remaining data beats are valid for each subsequent dqs edge. 7. this specification relates to the required hold time of ddr memories. ddr_dq[15:8] is relative to ddr_dqs[1]; ddr_dq[7:0] is relative to ddr_dqs[0] 8. data input skew is derived from each dqs clock edge. it begins with a dqs transition and ends when the last data line becomes valid. this input skew must include ddr memory output skew and system level board skew (due to routing or other factors). peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 43
wd2wd1 wd3 wd4 cmd row col tddrck tddrckh tddrckl tcmv tcmh tqh tqs tqs tqh tdqss ddr_clk ddr_clk ddr_csn, ddr_we ddr_cas, ddr_ras ddr_an ddr_dmn ddr_dqsn ddr_dqn figure 16. ddr write timing peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. 44 preliminary freescale semiconductor, inc.
rd2rd1 rd3 rd4 cmd row col tddrck tddrckh tddrckl tcmv tcmh cl=3 cl=2.5 rd2rd1 rd3 rd4 dqs read preamble dqs read preamble dqs read postamble dqs read postamble tih tis ddr_clk ddr_clk ddr_csn, ddr_we ddr_cas, ddr_ras ddr_an ddr_dqs (cl=2.5) ddr_dqn (cl=2.5) ddr_dqs (cl=3) ddr_dqn (cl=3) figure 17. ddr read timing figure 18. ddr read timing, dq vs. dqs 6.4.5 flexbus switching specifications all processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a reference clock, fb_clk. the fb_clk frequency may be the same as the internal system bus frequency or an integer divider of that frequency. peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 45
the following timing numbers indicate when data is latched or driven onto the external bus, relative to the flexbus output clock (fb_clk). all other timing relationships can be derived from these values. table 26. flexbus limited voltage range switching specifications num description min. max. unit notes operating voltage 2.7 3.6 v frequency of operation fb_clk mhz fb1 clock period 20 ns fb2 address, data, and control output valid 11.5 ns 1 fb3 address, data, and control output hold 0.5 ns 1 fb4 data and fb_ta input setup 8.5 ns 2 fb5 data and fb_ta input hold 0.5 ns 2 1. specification is valid for all fb_ad[31:0], fb_be/bwe n , fb_cs n , fb_oe, fb_r/ w, fb_tbst, fb_tsiz[1:0], fb_ale, and fb_ts. 2. specification is valid for all fb_ad[31:0] and fb_ta. table 27. flexbus full voltage range switching specifications num description min. max. unit notes operating voltage 1.71 3.6 v frequency of operation fb_clk mhz fb1 clock period 1/fb_clk ns fb2 address, data, and control output valid 13.5 ns 1 fb3 address, data, and control output hold 0 ns 1 fb4 data and fb_ta input setup 13.7 ns 2 fb5 data and fb_ta input hold 0.5 ns 2 1. specification is valid for all fb_ad[31:0], fb_be/bwe n , fb_cs n , fb_oe, fb_r/ w, fb_tbst, fb_tsiz[1:0], fb_ale, and fb_ts. 2. specification is valid for all fb_ad[31:0] and fb_ta. peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. 46 preliminary freescale semiconductor, inc.
address address data tsiz aa=1 aa=0 aa=1 aa=0 fb1 fb3 fb5 fb4 fb4 fb5 fb2 fb_clk fb_a[y] fb_d[x] fb_rw fb_ts fb_ale fb_csn fb_oen fb_ben fb_ta fb_tsiz[1:0] figure 19. flexbus read timing diagram peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 47
address address data tsiz aa=1 aa=0 aa=1 aa=0 fb1 fb3 fb4 fb5 fb2 fb_clk fb_a[y] fb_d[x] fb_rw fb_ts fb_ale fb_csn fb_oen fb_ben fb_ta fb_tsiz[1:0] figure 20. flexbus write timing diagram 6.5 security and integrity modules 6.5.1 dryice tamper electrical specifications table 28. dryice tamper electrical specifications symbol description min typ max unit notes v bat 3.3v supply voltage 1.71 3.6 v table continues on the next page... peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. 48 preliminary freescale semiconductor, inc.
table 28. dryice tamper electrical specifications (continued) symbol description min typ max unit notes i tam supply current ? clock tamper enabled ? clock and voltage tamper enabled ? clock, voltage and temperature tamper enabled 0.9 1.01 1.35 tbd tbd tbd a a a extal32 input clock 32.768 khz 1 low voltage detect ? assertion ? negation 1.55 1.7 1.60 1.75 1.65 1.8 v v high voltage detect assertion 3.65 3.7 3.75 v voltage tamper detect operational temperature ? no false alarms ? with possible false alarms -50 -60 150 160 c c temperature tamper detect assertion ? low temperature detect ? high temperature detect -55 110 -45 130 c c 2 temperature tamper detect operational voltage ? no false alarms ? with possible false alarms 1.6 < 1.5 3.7 > 3.8 v v clock tamper detect assertion ? low frequency ? high frequency ? delay after loss of clock 40 2 20 khz khz ms 3 clock tamper detect operational temperature ? no false alarms ? with possible false alarms -50 -60 150 160 c clock tamper detect operational voltage ? no false alarms ? with possible false alarms 1.6 < 1.5 3.7 > 3.8 v v 1. extal32 oscillator must be enabled before enabling dryice tamper detect. 2. temperature tamper detector assertion/negation is refreshed each 28 extal32 clock cycles. 3. clock tamper detector assertion/negation is refreshed each 28 extal32 clock cycles. 6.6 analog peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 49
6.6.1 adc electrical specifications the 16-bit accuracy specifications listed in table 29 and table 30 are achievable on the differential pins adcx_dp0, adcx_dm0. the adcx_dp2 and adcx_dm2 adc inputs are connected to the pga outputs and are not direct device pins. accuracy specifications for these pins are defined in table 31 and table 32 . all other adc channels meet the 13-bit differential/12-bit single-ended accuracy specifications. 6.6.1.1 16-bit adc operating conditions table 29. 16-bit adc operating conditions symbol description conditions min. typ. 1 max. unit notes v dda supply voltage absolute 1.71 3.6 v v dda supply voltage delta to v dd (v dd - v dda ) -100 0 +100 mv 2 v ssa ground voltage delta to v ss (v ss - v ssa ) -100 0 +100 mv 2 v refh adc reference voltage high 1.13 v dda v dda v v refl reference voltage low v ssa v ssa v ssa v v adin input voltage v refl v refh v c adin input capacitance ? 16 bit modes ? 8/10/12 bit modes 8 4 10 5 pf r adin input resistance 2 5 k r as analog source resistance 13/12 bit modes f adck < 4mhz 5 k 3 f adck adc conversion clock frequency 13 bit modes 1.0 18.0 mhz 4 f adck adc conversion clock frequency 16 bit modes 2.0 12.0 mhz 4 table continues on the next page... peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. 50 preliminary freescale semiconductor, inc.
table 29. 16-bit adc operating conditions (continued) symbol description conditions min. typ. 1 max. unit notes c rate adc conversion rate 13 bit modes no adc hardware averaging continuous conversions enabled, subsequent conversion time 20.000 818.330 ksps 5 c rate adc conversion rate 16 bit modes no adc hardware averaging continuous conversions enabled, subsequent conversion time 37.037 461.467 ksps 5 1. typical values assume v dda = 3.0 v, temp = 25c, f adck = 1.0 mhz unless otherwise stated. typical values are for reference only and are not tested in production. 2. dc potential difference. 3. this resistance is external to mcu. the analog source resistance should be kept as low as possible in order to achieve the best results. the results in this datasheet were derived from a system which has <8 analog source resistance. the r as / c as time constant should be kept to <1ns. 4. to use the maximum adc conversion clock frequency, the adhsc bit should be set and the adlpc bit should be clear. 5. for guidelines and examples of conversion rate calculation, download the adc calculator tool: http://cache.freescale.com/ files/soft_dev_tools/software/app_software/converters/adc_calculator_cnv.zip?fpsp=1 r as v as c as z as v adin z adin r adin r adin r adin r adin c adin pad leakage due to input protection input pin input pin input pin input pin simplified input pin equivalent circuit simplified channel select circuit adc sar engine figure 21. adc input impedance equivalency diagram peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 51
6.6.1.2 16-bit adc electrical characteristics table 30. 16-bit adc characteristics (v refh = v dda , v refl = v ssa ) symbol description conditions 1 min. typ. 2 max. unit notes i dda_adc supply current 0.215 1.7 ma 3 f adack adc asynchronous clock source ? adlpc=1, adhsc=0 ? adlpc=1, adhsc=1 ? adlpc=0, adhsc=0 ? adlpc=0, adhsc=1 1.2 3.0 2.4 4.4 2.4 4.0 5.2 6.2 3.9 7.3 6.1 9.5 mhz mhz mhz mhz t adack = 1/ f adack sample time see reference manual chapter for sample times tue total unadjusted error ? 12 bit modes ? <12 bit modes 4 1.4 6.8 2.1 lsb 4 5 dnl differential non- linearity ? 12 bit modes ? <12 bit modes 0.7 0.2 -1.1 to +1.9 -0.3 to 0.5 lsb 4 5 inl integral non- linearity ? 12 bit modes ? <12 bit modes 1.0 0.5 -2.7 to +1.9 -0.7 to +0.5 lsb 4 5 e fs full-scale error ? 12 bit modes ? <12 bit modes -4 -1.4 -5.4 -1.8 lsb 4 v adin = v dda 5 e q quantization error ? 16 bit modes ? 13 bit modes -1 to 0 0.5 lsb 4 enob effective number of bits 16 bit differential mode ? avg=32 ? avg=4 16 bit single-ended mode ? avg=32 ? avg=4 12.8 11.9 12.2 11.4 14.5 13.8 13.9 13.1 bits bits bits bits 6 sinad signal-to-noise plus distortion see enob 6.02 enob + 1.76 db thd total harmonic distortion 16 bit differential mode ? avg=32 16 bit single-ended mode ? avg=32 C94 -85 db db 7 table continues on the next page... peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. 52 preliminary freescale semiconductor, inc.
table 30. 16-bit adc characteristics (v refh = v dda , v refl = v ssa ) (continued) symbol description conditions 1 min. typ. 2 max. unit notes sfdr spurious free dynamic range 16 bit differential mode ? avg=32 16 bit single-ended mode ? avg=32 82 78 95 90 db db 7 e il input leakage error i in r as mv i in = leakage current (refer to the mcu's voltage and current operating ratings) temp sensor slope C40c to 105c 1.715 mv/c v temp25 temp sensor voltage 25c 719 mv 1. all accuracy numbers assume the adc is calibrated with v refh = v dda 2. typical values assume v dda = 3.0 v, temp = 25c, f adck = 2.0 mhz unless otherwise stated. typical values are for reference only and are not tested in production. 3. the adc supply current depends on the adc conversion clock speed, conversion rate and the adlpc bit (low power). for lowest power operation the adlpc bit should be set, the hsc bit should be clear with 1mhz adc conversion clock speed. 4. 1 lsb = (v refh - v refl )/2 n 5. adc conversion clock <16mhz, max hardware averaging (avge = %1, avgs = %11) 6. input data is 100 hz sine wave. adc conversion clock <12mhz. 7. input data is 1 khz sine wave. adc conversion clock <12mhz. peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 53
figure 22. typical enob vs. adc_clk for 16-bit differential mode figure 23. typical enob vs. adc_clk for 16-bit single-ended mode peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. 54 preliminary freescale semiconductor, inc.
6.6.1.3 16-bit adc with pga operating conditions table 31. 16-bit adc with pga operating conditions symbol description conditions min. typ. 1 max. unit notes v dda supply voltage absolute 1.71 3.6 v v refpga pga ref voltage vref_ou t vref_ou t vref_ou t v 2 , 3 v adin input voltage v ssa v dda v v cm input common mode range v ssa v dda v r pgad differential input impedance gain = 1, 2, 4, 8 gain = 16, 32 gain = 64 128 64 32 k in+ to in- 4 r as analog source resistance 100 5 t s adc sampling time 1.25 s 6 c rate adc conversion rate 13 bit modes no adc hardware averaging continuous conversions enabled peripheral clock = 50 mhz 18.484 450 ksps 7 16 bit modes no adc hardware averaging continuous conversions enabled peripheral clock = 50 mhz 37.037 250 ksps 8 1. typical values assume v dda = 3.0 v, temp = 25c, f adck = 6 mhz unless otherwise stated. typical values are for reference only and are not tested in production. 2. adc must be configured to use the internal voltage reference (vref_out) 3. pga reference is internally connected to the vref_out pin. if the user wishes to drive vref_out with a voltage other than the output of the vref module, the vref module must be disabled. 4. for single ended configurations the input impedance of the driven input is r pgad /2 5. the analog source resistance (r as ), external to mcu, should be kept as minimum as possible. increased r as causes drop in pga gain without affecting other performances. this is not dependent on adc clock frequency. 6. the minimum sampling time is dependent on input signal frequency and adc mode of operation. a minimum of 1.25s time should be allowed for f in =4 khz at 16-bit differential mode. recommended adc setting is: adlsmp=1, adlsts=2 at 8 mhz adc clock. 7. adc clock = 18 mhz, adlsmp = 1, adlst = 00, adhsc = 1 8. adc clock = 12 mhz, adlsmp = 1, adlst = 01, adhsc = 1 peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 55
6.6.1.4 16-bit adc with pga characteristics table 32. 16-bit adc with pga characteristics symbol description conditions min. typ. 1 max. unit notes i dda_pga supply current low power (adc_pga[pgalpb]=0) 420 644 a 2 i dc_pga input dc current a 3 gain =1, v refpga =1.2v, v cm =0.5v 1.54 a gain =64, v refpga =1.2v, v cm =0.1v 0.57 a g gain 4 ? pgag=0 ? pgag=1 ? pgag=2 ? pgag=3 ? pgag=4 ? pgag=5 ? pgag=6 0.95 1.9 3.8 7.6 15.2 30.0 58.8 1 2 4 8 16 31.6 63.3 1.05 2.1 4.2 8.4 16.6 33.2 67.8 r as < 100 bw input signal bandwidth ? 16-bit modes ? < 16-bit modes 4 40 khz khz psrr power supply rejection ratio gain=1 -84 db v dda = 3v 100mv, f vdda = 50hz, 60hz cmrr common mode rejection ratio ? gain=1 ? gain=64 -84 -85 db db v cm = 500mvpp, f vcm = 50hz, 100hz v ofs input offset voltage ? chopping disabled (adc_pga[pgachpb] =1) ? chopping enabled (adc_pga[pgachpb] =0) 2.4 0.2 tbd mv mv output offset = v ofs *(gain+1) t gsw gain switching settling time 10 s 5 dg/dt gain drift over temperature ? gain=1 ? gain=64 tbd tbd tbd tbd ppm/c ppm/c 0 to 50c dv ofs /dt offset drift over temperature gain=1 tbd tbd ppm/c 0 to 50c, adc averaging=32 dg/dv dda gain drift over supply voltage ? gain=1 ? gain=64 tbd tbd tbd tbd %/v %/v v dda from 1.71 to 3.6v table continues on the next page... peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. 56 preliminary freescale semiconductor, inc.
table 32. 16-bit adc with pga characteristics (continued) symbol description conditions min. typ. 1 max. unit notes e il input leakage error all modes i in r as mv i in = leakage current (refer to the mcu's voltage and current operating ratings) v pp,diff maximum differential input signal swing where v x = v refpga 0.583 v 6 snr signal-to-noise ratio ? gain=1 ? gain=64 80 52 90 66 db db 16-bit differential mode, average=32 thd total harmonic distortion ? gain=1 ? gain=64 85 49 100 95 db db 16-bit differential mode, average=32, f in =100hz sfdr spurious free dynamic range ? gain=1 ? gain=64 85 53 105 88 db db 16-bit differential mode, average=32, f in =100hz enob effective number of bits ? gain=1, average=4 ? gain=1, average=8 ? gain=64, average=4 ? gain=64, average=8 ? gain=1, average=32 ? gain=2, average=32 ? gain=4, average=32 ? gain=8, average=32 ? gain=16, average=32 ? gain=32, average=32 ? gain=64, average=32 11.6 tbd 7.2 tbd 12.8 11.0 7.9 7.3 6.8 6.8 7.5 13.4 12.7 9.6 8.7 14.5 14.3 13.8 13.1 12.5 11.5 10.6 bits bits bits bits bits bits bits bits bits bits bits 16-bit differential mode,f in =100h z sinad signal-to-noise plus distortion ratio see enob 6.02 enob + 1.76 db 1. typical values assume v dda =3.0v, temp=25c, f adck =6mhz unless otherwise stated. 2. this current is a pga module adder, in addition to and adc conversion currents. 3. between in+ and in-. the pga draws a dc current from the input terminals. the magnitude of the dc current is a strong function of input common mode voltage (v cm ) and the pga gain. 4. gain = 2 pgag 5. after changing the pga gain setting, a minimum of 2 adc+pga conversions should be ignored. peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 57
6. limit the input signal swing so that the pga does not saturate during operation. input signal swing is dependent on the pga reference voltage and gain setting. 6.6.2 cmp and 6-bit dac electrical specifications table 33. comparator and 6-bit dac electrical specifications symbol description min. typ. max. unit v dd supply voltage 1.71 3.6 v i ddhs supply current, high-speed mode (en=1, pmode=1) 200 a i ddls supply current, low-speed mode (en=1, pmode=0) 20 a v ain analog input voltage v ss C 0.3 v dd v v aio analog input offset voltage 20 mv v h analog comparator hysteresis 1 ? cr0[hystctr] = 00 ? cr0[hystctr] = 01 ? cr0[hystctr] = 10 ? cr0[hystctr] = 11 5 10 20 30 mv mv mv mv v cmpoh output high v dd C 0.5 v v cmpol output low 0.5 v t dhs propagation delay, high-speed mode (en=1, pmode=1) 20 50 200 ns t dls propagation delay, low-speed mode (en=1, pmode=0) 80 250 600 ns analog comparator initialization delay 2 40 s i dac6b 6-bit dac current adder (enabled) 7 a inl 6-bit dac integral non-linearity C0.5 0.5 lsb 3 dnl 6-bit dac differential non-linearity C0.3 0.3 lsb 1. typical hysteresis is measured with input voltage range limited to 0.6 to v dd -0.6v. 2. comparator initialization delay is defined as the time between software writes to change control inputs (writes to dacen, vrsel, psel, msel, vosel) and the comparator output settling to a stable level. 3. 1 lsb = v reference /64 peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. 58 preliminary freescale semiconductor, inc.
0.04 0.05 0.06 0.07 0.08 p hystereris (v) 00 01 10 hystctr setting 0 0.01 0.02 0.03 0.1 0.4 0.7 1 1.3 1.6 1.9 2.2 2.5 2.8 3.1 cm 10 11 vin level (v) figure 24. typical hysteresis vs. vin level (vdd=3.3v, pmode=0) peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 59
0 08 0.1 0.12 0.14 0.16 0.18 p hystereris (v) 00 01 10 hystctr setting 0 0.02 0.04 0.06 0.08 0.1 0.4 0.7 1 1.3 1.6 1.9 2.2 2.5 2.8 3.1 cm p 10 11 vin level (v) figure 25. typical hysteresis vs. vin level (vdd=3.3v, pmode=1) 6.6.3 12-bit dac electrical characteristics 6.6.3.1 12-bit dac operating requirements table 34. 12-bit dac operating requirements symbol desciption min. max. unit notes v dda supply voltage 1.71 3.6 v v dacr reference voltage 1.13 3.6 v 1 t a temperature ?40 105 c c l output load capacitance 100 pf 2 i l output load current 1 ma 1. the dac reference can be selected to be vdda or the voltage output of the vref module (vref_out) 2. a small load capacitance (47 pf) can improve the bandwidth performance of the dac peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. 60 preliminary freescale semiconductor, inc.
6.6.3.2 12-bit dac operating behaviors table 35. 12-bit dac operating behaviors symbol description min. typ. max. unit notes i dda_dacl p supply current low-power mode 150 a i dda_dac hp supply current high-speed mode 700 a t daclp full-scale settling time (0x080 to 0xf7f) low-power mode 100 200 s 1 t dachp full-scale settling time (0x080 to 0xf7f) high-power mode 15 30 s 1 t ccdaclp code-to-code settling time (0xbf8 to 0xc08) low-power mode and high-speed mode 0.7 1 s 1 v dacoutl dac output voltage range low high- speed mode, no load, dac set to 0x000 100 mv v dacouth dac output voltage range high high- speed mode, no load, dac set to 0xfff v dacr ?100 v dacr mv inl integral non-linearity error high speed mode 8 lsb 2 dnl differential non-linearity error v dacr > 2 v 1 lsb 3 dnl differential non-linearity error v dacr = vref_out 1 lsb 4 v offset offset error 0.4 0.8 %fsr 5 e g gain error 0.1 0.6 %fsr 5 psrr power supply rejection ratio, v dda > = 2.4 v 60 90 db t co temperature coefficient offset voltage 3.7 v/c 6 t ge temperature coefficient gain error 0.000421 %fsr/c rop output resistance load = 3 k 250 sr slew rate -80h f7fh 80h ? high power (sp hp ) ? low power (sp lp ) 1.2 0.05 1.7 0.12 v/s ct channel to channel cross talk -80 db bw 3db bandwidth ? high power (sp hp ) ? low power (sp lp ) 550 40 khz 1. settling within 1 lsb 2. the inl is measured for 0+100mv to v dacr ?100 mv 3. the dnl is measured for 0+100 mv to v dacr ?100 mv 4. the dnl is measured for 0+100mv to v dacr ?100 mv with v dda > 2.4v 5. calculated by a best fit curve from v ss +100 mv to v dacr ?100 mv peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 61
6. vdda = 3.0v, reference select set for vdda (dacx_co:dacrfs = 1), high power mode(dacx_c0:lpen = 0), dac set to 0x800, temp range from -40c to 105c figure 26. typical inl error vs. digital code peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. 62 preliminary freescale semiconductor, inc.
figure 27. offset at half scale vs. temperature 6.6.4 voltage reference electrical specifications table 36. vref full-range operating requirements symbol description min. max. unit notes v dda supply voltage 1.71 3.6 v t a temperature ?40 105 c c l output load capacitance 100 nf 1 , 2 1. c l must be connected to vref_out if the vref_out functionality is being used for either an internal or external reference. 2. the load capacitance should not exceed +/-25% of the nominal specified c l value over the operating temperature range of the device. peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 63
table 37. vref full-range operating behaviors symbol description min. typ. max. unit notes v out voltage reference output with factory trim at nominal v dda and temperature=25c 1.1965 1.2 1.2027 v v out voltage reference output with factory trim 1.1584 1.2376 v v out voltage reference output user trim 1.198 1.202 v v step voltage reference trim step 0.5 mv v tdrift temperature drift (vmax -vmin across the full temperature range) 80 mv i bg bandgap only current 80 a 1 i tr high-power buffer current tbd ma 1 v load load regulation ? current = + 1.0 ma ? current = - 1.0 ma 2 5 mv 1 , 2 t stup buffer startup time 100 s v vdrift voltage drift (vmax -vmin across the full voltage range) 2 mv 1 1. see the chip's reference manual for the appropriate settings of the vref status and control register. 2. load regulation voltage is the difference between the vref_out voltage with no load vs. voltage with defined load table 38. vref limited-range operating requirements symbol description min. max. unit notes t a temperature 0 50 c table 39. vref limited-range operating behaviors symbol description min. max. unit notes v out voltage reference output with factory trim 1.173 1.225 v 6.7 timers see general switching specifications . 6.8 communication interfaces peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. 64 preliminary freescale semiconductor, inc.
6.8.1 ethernet switching specifications the following timing specs are defined at the chip i/o pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface. 6.8.1.1 mii signal switching specifications the following timing specs meet the requirements for mii style interfaces for a range of transceiver devices. table 40. mii signal switching specifications symbol description min. max. unit rxclk frequency 25 mhz mii1 rxclk pulse width high 35% 65% rxclk period mii2 rxclk pulse width low 35% 65% rxclk period mii3 rxd[3:0], rxdv, rxer to rxclk setup 5 ns mii4 rxclk to rxd[3:0], rxdv, rxer hold 5 ns txclk frequency 25 mhz mii5 txclk pulse width high 35% 65% txclk period mii6 txclk pulse width low 35% 65% txclk period mii7 txclk to txd[3:0], txen, txer invalid 2 ns mii8 txclk to txd[3:0], txen, txer valid 25 ns mii7mii8 valid data valid data valid data mii6 mii5 txclk (input) txd[n:0] txen txer figure 28. mii transmit signal timing diagram peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 65
mii2 mii1 mii4mii3 valid data valid data valid data rxclk (input) rxd[n:0] rxdv rxer figure 29. mii receive signal timing diagram 6.8.1.2 rmii signal switching specifications the following timing specs meet the requirements for rmii style interfaces for a range of transceiver devices. table 41. rmii signal switching specifications num description min. max. unit extal frequency (rmii input clock rmii_clk) 50 mhz rmii1 rmii_clk pulse width high 35% 65% rmii_clk period rmii2 rmii_clk pulse width low 35% 65% rmii_clk period rmii3 rxd[1:0], crs_dv, rxer to rmii_clk setup 4 ns rmii4 rmii_clk to rxd[1:0], crs_dv, rxer hold 2 ns rmii7 rmii_clk to txd[1:0], txen invalid 4 ns rmii8 rmii_clk to txd[1:0], txen valid 15 ns 6.8.2 usb electrical specifications the usb electricals for the usb on-the-go module conform to the standards documented by the universal serial bus implementers forum. for the most up-to-date standards, visit http://www.usb.org. peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. 66 preliminary freescale semiconductor, inc.
6.8.3 usb dcd electrical specifications table 42. usb dcd electrical specifications symbol description min. typ. max. unit v dp_src usb_dp source voltage (up to 250 a) 0.5 0.7 v v lgc threshold voltage for logic high 0.8 2.0 v i dp_src usb_dp source current 7 10 13 a i dm_sink usb_dm sink current 50 100 150 a r dm_dwn d- pulldown resistance for data pin contact detect 14.25 24.8 k v dat_ref data detect voltage 0.25 0.325 0.4 v 6.8.4 usb vreg electrical specifications table 43. usb vreg electrical specifications symbol description min. typ. 1 max. unit notes vregin input supply voltage 2.7 5.5 v i ddon quiescent current run mode, load current equal zero, input supply (vregin) > 3.6 v 120 186 a i ddstby quiescent current standby mode, load current equal zero 1.1 1.54 a i ddoff quiescent current shutdown mode ? vregin = 5.0 v and temperature=25c ? across operating voltage and temperature 650 4 na a i loadrun maximum load current run mode 120 ma i loadstby maximum load current standby mode 1 ma v reg33out regulator output voltage input supply (vregin) > 3.6 v ? run mode ? standby mode 3 2.1 3.3 2.8 3.6 3.6 v v v reg33out regulator output voltage input supply (vregin) < 3.6 v, pass-through mode 2.1 3.6 v 2 c out external output capacitor 1.76 2.2 8.16 f esr external output capacitor equivalent series resistance 1 100 m i lim short circuit current 290 ma 1. typical values assume vregin = 5.0 v, temp = 25 c unless otherwise stated. 2. operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to i load . peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 67
6.8.5 ulpi timing specifications the ulpi interface is fully compliant with the industry standard utmi+ low pin interface. control and data timing requirements for the ulpi pins are given in the following table. these timings apply to synchronous mode only. all timings are measured with respect to the clock as seen at the usb_clkin pin. table 44. ulpi timing specifications num description min. typ. max. unit usb_clkin operating frequency 60 mhz usb_clkin duty cycle 50 % u1 usb_clkin clock period 16.67 ns u2 input setup (control and data) 5 ns u3 input hold (control and data) 1 ns u4 output valid (control and data) 9.5 ns u5 output hold (control and data) 1 ns u1 u2 u3 u4 u5 usb_clkin ulpi_dir/ulpi_nxt (control input) ulpi_datan (input) ulpi_stp (control output) ulpi_datan (output) figure 30. ulpi timing diagram peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. 68 preliminary freescale semiconductor, inc.
6.8.6 can switching specifications see general switching specifications . 6.8.7 dspi switching specifications (limited voltage range) the dma serial peripheral interface (dspi) provides a synchronous serial bus with master and slave operations. many of the transfer attributes are programmable. the tables below provide dspi timing characteristics for classic spi timing modes. refer to the dspi chapter of the reference manual for information on the modified transfer formats used for communicating with slower peripheral devices. table 45. master mode dspi timing (limited voltage range) num description min. max. unit notes operating voltage 2.7 3.6 v frequency of operation 30 mhz ds1 dspi_sck output cycle time 2 x t bus ns ds2 dspi_sck output high/low time (t sck /2) ? 2 (t sck /2) + 2 ns ds3 dspi_pcs n valid to dspi_sck delay (t bus x 2) ? 2 ns 1 ds4 dspi_sck to dspi_pcs n invalid delay (t bus x 2) ? 2 ns 2 ds5 dspi_sck to dspi_sout valid 8.5 ns ds6 dspi_sck to dspi_sout invalid ?2 ns ds7 dspi_sin to dspi_sck input setup 15 ns ds8 dspi_sck to dspi_sin input hold 0 ns 1. the delay is programmable in spix_ctarn[pssck] and spix_ctarn[cssck]. 2. the delay is programmable in spix_ctarn[pasc] and spix_ctarn[asc]. ds3 ds4 ds1 ds2 ds7 ds8 first data last data ds5 first data data last data ds6 data dspi_pcsn dspi_sck (cpol=0) dspi_sin dspi_sout figure 31. dspi classic spi timing master mode peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 69
table 46. slave mode dspi timing (limited voltage range) num description min. max. unit operating voltage 2.7 3.6 v frequency of operation 15 mhz ds9 dspi_sck input cycle time 4 x t bus ns ds10 dspi_sck input high/low time (t sck /2) ? 2 (t sck /2) + 2 ns ds11 dspi_sck to dspi_sout valid 10 ns ds12 dspi_sck to dspi_sout invalid 0 ns ds13 dspi_sin to dspi_sck input setup 2 ns ds14 dspi_sck to dspi_sin input hold 7 ns ds15 dspi_ss active to dspi_sout driven 14 ns ds16 dspi_ss inactive to dspi_sout not driven 14 ns first data last data first data data last data data ds15 ds10 ds9 ds16 ds11 ds12 ds14 ds13 dspi_ss dspi_sck (cpol=0) dspi_sout dspi_sin figure 32. dspi classic spi timing slave mode 6.8.8 dspi switching specifications (full voltage range) the dma serial peripheral interface (dspi) provides a synchronous serial bus with master and slave operations. many of the transfer attributes are programmable. the tables below provides dspi timing characteristics for classic spi timing modes. refer to the dspi chapter of the reference manual for information on the modified transfer formats used for communicating with slower peripheral devices. table 47. master mode dspi timing (full voltage range) num description min. max. unit notes operating voltage 1.71 3.6 v 1 frequency of operation 15 mhz table continues on the next page... peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. 70 preliminary freescale semiconductor, inc.
table 47. master mode dspi timing (full voltage range) (continued) num description min. max. unit notes ds1 dspi_sck output cycle time 4 x t bus ns ds2 dspi_sck output high/low time (t sck /2) - 4 (t sck/2) + 4 ns ds3 dspi_pcs n valid to dspi_sck delay (t bus x 2) ? 4 ns 2 ds4 dspi_sck to dspi_pcs n invalid delay (t bus x 2) ? 4 ns 3 ds5 dspi_sck to dspi_sout valid 10 ns ds6 dspi_sck to dspi_sout invalid -4.5 ns ds7 dspi_sin to dspi_sck input setup 20.5 ns ds8 dspi_sck to dspi_sin input hold 0 ns 1. the dspi module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced. 2. the delay is programmable in spix_ctarn[pssck] and spix_ctarn[cssck]. 3. the delay is programmable in spix_ctarn[pasc] and spix_ctarn[asc]. ds3 ds4 ds1 ds2 ds7 ds8 first data last data ds5 first data data last data ds6 data dspi_pcsn dspi_sck (cpol=0) dspi_sin dspi_sout figure 33. dspi classic spi timing master mode table 48. slave mode dspi timing (full voltage range) num description min. max. unit operating voltage 1.71 3.6 v frequency of operation 7.5 mhz ds9 dspi_sck input cycle time 8 x t bus ns ds10 dspi_sck input high/low time (t sck /2) - 4 (t sck/2) + 4 ns ds11 dspi_sck to dspi_sout valid 20 ns ds12 dspi_sck to dspi_sout invalid 0 ns ds13 dspi_sin to dspi_sck input setup 2 ns ds14 dspi_sck to dspi_sin input hold 7 ns ds15 dspi_ss active to dspi_sout driven 19 ns table continues on the next page... peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 71
table 48. slave mode dspi timing (full voltage range) (continued) num description min. max. unit ds16 dspi_ss inactive to dspi_sout not driven 19 ns first data last data first data data last data data ds15 ds10 ds9 ds16 ds11 ds12 ds14 ds13 dspi_ss dspi_sck (cpol=0) dspi_sout dspi_sin figure 34. dspi classic spi timing slave mode 6.8.9 i 2 c switching specifications see general switching specifications . 6.8.10 uart switching specifications see general switching specifications . 6.8.11 sdhc specifications the following timing specs are defined at the chip i/o pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface. table 49. sdhc switching specifications num symbol description min. max. unit operating voltage 2.7 3.6 v card input clock table continues on the next page... peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. 72 preliminary freescale semiconductor, inc.
table 49. sdhc switching specifications (continued) num symbol description min. max. unit sd1 fpp clock frequency (low speed) 0 400 khz fpp clock frequency (sd\sdio full speed) 0 25 mhz fpp clock frequency (mmc full speed) 0 20 mhz f od clock frequency (identification mode) 0 400 khz sd2 t wl clock low time 7 ns sd3 t wh clock high time 7 ns sd4 t tlh clock rise time 3 ns sd5 t thl clock fall time 3 ns sdhc output / card inputs sdhc_cmd, sdhc_dat (reference to sdhc_clk) sd6 t od sdhc output delay (output valid) -5 6.5 ns sdhc input / card inputs sdhc_cmd, sdhc_dat (reference to sdhc_clk) sd7 t isu sdhc input setup time 5 ns sd8 t ih sdhc input hold time 0 ns sd2sd3 sd1 sd6 sd8 sd7 sdhc_clk output sdhc_cmd output sdhc_dat[3:0] input sdhc_cmd input sdhc_dat[3:0] figure 35. sdhc timing 6.8.12 i2s/sai switching specifications this section provides the ac timing for the i2s/sai module in master mode (clocks are driven) and slave mode (clocks are input). all timing is given for noninverted serial clock polarity (tcr2[bcp] is 0, rcr2[bcp] is 0) and a noninverted frame sync (tcr4[fsp] peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 73
is 0, rcr4[fsp] is 0). if the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the bit clock signal (bclk) and/or the frame sync (fs) signal shown in the following figures. table 50. i2s/sai master mode timing num. characteristic min. max. unit operating voltage 1.71 3.6 v s1 i2s_mclk cycle time 1 40 ns s2 i2s_mclk pulse width high/low 45% 55% mclk period s3 i2s_tx_bclk cycle time (output) 1 i2s_rx_bclk cycle time (output) 1 80 160 ns s4 i2s_tx_bclk pulse width high/low 45% 55% bclk period s5 i2s_tx_bclk/i2s_rx_bclk to i2s_tx_fs/ i2s_rx_fs output valid 15 ns s6 i2s_tx_bclk/i2s_rx_bclk to i2s_tx_fs/ i2s_rx_fs output invalid 0 ns s7 i2s_tx_bclk to i2s_txd valid 15 ns s8 i2s_tx_bclk to i2s_txd invalid 0 ns s9 i2s_rxd/i2s_rx_fs input setup before i2s_rx_bclk 25 ns s10 i2s_rxd/i2s_rx_fs input hold after i2s_rx_bclk 0 ns s11 i2s_tx_fs input assertion to i2s_txd output valid 2 21 ns 1. this parameter is limited in vlpx modes. 2. applies to first bit in each frame and only if the tcr4[fse] bit is clear s1 s2 s2 s3 s4 s4 s5 s9 s7 s9 s10 s7 s8 s6 s10 s8 i2s_mclk (output) i2s_tx_bclk/ i2s_rx_bclk (output) i2s_tx_fs/ i2s_rx_fs (output) i2s_tx_fs/ i2s_rx_fs (input) i2s_txd i2s_rxd figure 36. i2s/sai timing master modes peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. 74 preliminary freescale semiconductor, inc.
table 51. i2s/sai slave mode timing num. characteristic min. max. unit operating voltage 1.71 3.6 v s11 i2s_rx_bclk cycle time (input) i2s_tx_bclk cycle time (input) 80 160 ns s12 i2s_tx_bclk/i2s_rx_bclk pulse width high/low (input) 45% 55% mclk period s13 i2s_tx_fs/i2s_rx_fs input setup before i2s_tx_bclk/i2s_rx_bclk 10 ns s14 i2s_tx_fs/i2s_rx_fs input hold after i2s_tx_bclk/i2s_rx_bclk 2 ns s15 i2s_tx_bclk to i2s_txd/i2s_tx_fs output valid 29 ns s16 i2s_tx_bclk to i2s_txd/i2s_tx_fs output invalid 0 ns s17 i2s_rxd setup before i2s_rx_bclk 10 ns s18 i2s_rxd hold after i2s_rx_bclk 2 ns s19 i2s_tx_fs input assertion to i2s_txd output valid 1 21 ns 1. applies to first bit in each frame and only if the tcr4[fse] bit is clear s15 s13 s15 s17 s18 s15 s16 s16 s14 s16 s11 s12 s12 i2s_tx_bclk/ i2s_rx_bclk (input) i2s_tx_fs/ i2s_rx_fs (output) i2s_txd i2s_rxd i2s_tx_fs/ i2s_rx_fs (input) figure 37. i2s/sai timing slave modes 6.9 human-machine interfaces (hmi) peripheral operating requirements and behaviors k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 75
6.9.1 tsi electrical specifications table 52. tsi electrical specifications symbol description min. typ. max. unit notes v ddtsi operating voltage 1.71 3.6 v c ele target electrode capacitance range 1 20 500 pf 1 f refmax reference oscillator frequency 8 tbd mhz 2 f elemax electrode oscillator frequency 0.5 tbd mhz 2 c ref internal reference capacitor tbd 1 tbd pf v delta oscillator delta voltage tbd 600 tbd mv 2 i ref reference oscillator current source base current ? 1ua setting (refchrg=0) ? 32ua setting (refchrg=31) 1.133 36 1.5 50 a 2 , 3 i ele electrode oscillator current source base current ? 1ua setting (extchrg=0) ? 32ua setting (extchrg=31) 1.133 36 1.5 50 a 2 , 4 pres5 electrode capacitance measurement precision 8.3333 38.4 pf/count 5 pres20 electrode capacitance measurement precision 8.3333 38.4 pf/count 6 pres100 electrode capacitance measurement precision 8.3333 38.4 pf/count 7 maxsens maximum sensitivity 0.003 12.5 ff/count 8 res resolution 16 bits t con20 response time @ 20 pf 8 15 25 s 9 i tsi_run current added in run mode 55 a i tsi_lp low power mode current adder 1.3 tbd a 10 1. the tsi module is functional with capacitance values outside this range. however, optimal performance is not guaranteed. 2. fixed external capacitance of 20 pf. 3. the programmable current source value is generated by multiplying the scanc[refchrg] value and the base current. 4. the programmable current source value is generated by multiplying the scanc[extchrg] value and the base current. 5. measured with a 5 pf electrode, reference oscillator frequency of 10 mhz, ps = 128, nscn = 8; iext = 16. 6. measured with a 20 pf electrode, reference oscillator frequency of 10 mhz, ps = 128, nscn = 2; iext = 16. 7. measured with a 20 pf electrode, reference oscillator frequency of 10 mhz, ps = 16, nscn = 3; iext = 16. 8. sensitivity defines the minimum capacitance change when a single count from the tsi module changes, it is equal to (c ref * i ext )/( i ref * ps * nscn). sensitivity depends on the configuration used. the typical value listed is based on the following configuration: iext = 5 a, extchrg = 4, ps = 128, nscn = 2, i ref = 16 a, refchrg = 15, c ref = 1.0 pf. the minimum sensitivity describes the smallest possible capacitance that can be measured by a single count (this is the best sensitivity but is described as a minimum because its the smallest number). the minimum sensitivity parameter is based on the following configuration: i ext = 1 a, extchrg = 0, ps = 128, nscn = 32, i ref = 32 a, refchrg = 31, c ref = 0.5 pf 9. time to do one complete measurement of the electrode. sensitivity resolution of 0.0133 pf, ps = 0, nscn = 0, 1 electrode, extchrg = 15. 10. refchrg=0, extchrg=4, ps=7, nscn=0f, lpscnitv=f, lpo is selected (1 khz), and fixed external capacitance of 20 pf. data is captured with an average of 7 periods window. 7 dimensions dimensions k61 sub-family data sheet data sheet, rev. 3, 2/2012. 76 preliminary freescale semiconductor, inc.
7.1 obtaining package dimensions package dimensions are provided in package drawings. to find a package drawing, go to http://www.freescale.com and perform a keyword search for the drawings document number: if you want the drawing for this package then use this document number 256-pin mapbga 98asa00346d 8 pinout 8.1 k61 signal multiplexing and pin assignments the following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. the port control module is responsible for selecting which alt functionality is available on each pin. 256 map bga pin name default alt0 alt1 alt2 alt3 alt4 alt5 alt6 alt7 ezport e2 pte0 adc1_se4a adc1_se4a pte0 spi1_pcs1 uart1_tx sdhc0_d1 i2c1_sda rtc_clko ut f2 pte1/ llwu_p0 adc1_se5a adc1_se5a pte1/ llwu_p0 spi1_sout uart1_rx sdhc0_d0 i2c1_scl spi1_sin f3 pte2/ llwu_p1 adc1_se6a adc1_se6a pte2/ llwu_p1 spi1_sck uart1_cts _b sdhc0_dcl k g2 pte3 adc1_se7a adc1_se7a pte3 spi1_sin uart1_rts _b sdhc0_cm d spi1_sout g7 vdd vdd vdd h7 vddint vddint vddint h8 vss vss vss f1 ptf17 disabled ptf17 spi2_sck ftm0_ch4 uart0_rx g1 ptf18 disabled ptf18 spi2_sout ftm1_ch0 uart0_tx g3 pte4/ llwu_p2 disabled pte4/ llwu_p2 spi1_pcs0 uart3_tx sdhc0_d3 g4 pte5 disabled pte5 spi1_pcs2 uart3_rx sdhc0_d2 ftm3_ch0 h2 pte6 disabled pte6 spi1_pcs3 uart3_cts _b i2s0_mclk ftm3_ch1 usb_sof_ out h1 ptf19 disabled ptf19 spi2_sin ftm1_ch1 uart5_rx h5 ptf20 disabled ptf20 spi2_pcs1 ftm2_ch0 uart5_tx pinout k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 77
256 map bga pin name default alt0 alt1 alt2 alt3 alt4 alt5 alt6 alt7 ezport h3 pte7 disabled pte7 uart3_rts _b i2s0_rxd0 ftm3_ch2 h4 pte8 adc2_se16 adc2_se16 pte8 i2s0_rxd1 uart5_tx i2s0_rx_fs ftm3_ch3 j1 pte9 adc2_se17 adc2_se17 pte9 i2s0_txd1 uart5_rx i2s0_rx_bc lk ftm3_ch4 j2 pte10 disabled pte10 uart5_cts _b i2s0_txd0 ftm3_ch5 k1 pte11 adc3_se16 adc3_se16 pte11 uart5_rts _b i2s0_tx_fs ftm3_ch6 k3 pte12 adc3_se17 adc3_se17 pte12 i2s0_tx_bc lk ftm3_ch7 g8 vdd vdd vdd h9 vss vss vss j3 pte16 adc0_se4a adc0_se4a pte16 spi0_pcs0 uart2_tx ftm_clkin 0 ftm0_flt3 k2 pte17 adc0_se5a adc0_se5a pte17 spi0_sck uart2_rx ftm_clkin 1 lptmr0_al t3 l4 pte18 adc0_se6a adc0_se6a pte18 spi0_sout uart2_cts _b i2c0_sda m3 pte19 adc0_se7a adc0_se7a pte19 spi0_sin uart2_rts _b i2c0_scl cmp3_out l2 vss vss vss m1 usb0_dp usb0_dp usb0_dp m2 usb0_dm usb0_dm usb0_dm l1 vout33 vout33 vout33 l3 vregin vregin vregin n1 pga2_dp/ adc2_dp0/ adc3_dp3/ adc0_dp1 pga2_dp/ adc2_dp0/ adc3_dp3/ adc0_dp1 pga2_dp/ adc2_dp0/ adc3_dp3/ adc0_dp1 n2 pga2_dm/ adc2_dm0/ adc3_dm3/ adc0_dm1 pga2_dm/ adc2_dm0/ adc3_dm3/ adc0_dm1 pga2_dm/ adc2_dm0/ adc3_dm3/ adc0_dm1 p1 pga3_dp/ adc3_dp0/ adc2_dp3/ adc1_dp1 pga3_dp/ adc3_dp0/ adc2_dp3/ adc1_dp1 pga3_dp/ adc3_dp0/ adc2_dp3/ adc1_dp1 p2 pga3_dm/ adc3_dm0/ adc2_dm3/ adc1_dm1 pga3_dm/ adc3_dm0/ adc2_dm3/ adc1_dm1 pga3_dm/ adc3_dm0/ adc2_dm3/ adc1_dm1 r1 pga0_dp/ adc0_dp0/ adc1_dp3 pga0_dp/ adc0_dp0/ adc1_dp3 pga0_dp/ adc0_dp0/ adc1_dp3 r2 pga0_dm/ adc0_dm0/ adc1_dm3 pga0_dm/ adc0_dm0/ adc1_dm3 pga0_dm/ adc0_dm0/ adc1_dm3 pinout k61 sub-family data sheet data sheet, rev. 3, 2/2012. 78 preliminary freescale semiconductor, inc.
256 map bga pin name default alt0 alt1 alt2 alt3 alt4 alt5 alt6 alt7 ezport t1 pga1_dp/ adc1_dp0/ adc0_dp3 pga1_dp/ adc1_dp0/ adc0_dp3 pga1_dp/ adc1_dp0/ adc0_dp3 t2 pga1_dm/ adc1_dm0/ adc0_dm3 pga1_dm/ adc1_dm0/ adc0_dm3 pga1_dm/ adc1_dm0/ adc0_dm3 n5 vdda vdda vdda p4 vrefh vrefh vrefh m4 vrefl vrefl vrefl n4 vssa vssa vssa p3 adc1_se16/ cmp2_in2/ adc0_se22 adc1_se16/ cmp2_in2/ adc0_se22 adc1_se16/ cmp2_in2/ adc0_se22 n3 adc0_se16/ cmp1_in2/ adc0_se21 adc0_se16/ cmp1_in2/ adc0_se21 adc0_se16/ cmp1_in2/ adc0_se21 t3 vref_out/ cmp1_in5/ cmp0_in5/ adc1_se18 vref_out/ cmp1_in5/ cmp0_in5/ adc1_se18 vref_out/ cmp1_in5/ cmp0_in5/ adc1_se18 r3 dac0_out/ cmp1_in3/ adc0_se23 dac0_out/ cmp1_in3/ adc0_se23 dac0_out/ cmp1_in3/ adc0_se23 r4 dac1_out/ cmp0_in4/ cmp2_in3/ adc1_se23 dac1_out/ cmp0_in4/ cmp2_in3/ adc1_se23 dac1_out/ cmp0_in4/ cmp2_in3/ adc1_se23 m5 tamper0/ rtc_wake up_b tamper0/ rtc_wake up_b tamper0/ rtc_wake up_b l5 tamper1 tamper1 tamper1 l6 tamper2 tamper2 tamper2 r5 tamper3 tamper3 tamper3 p6 tamper4 tamper4 tamper4 r6 tamper5 tamper5 tamper5 t6 xtal32 xtal32 xtal32 t5 extal32 extal32 extal32 p5 vbat vbat vbat n6 tamper6 tamper6 tamper6 m6 tamper7 tamper7 tamper7 g9 vdd vdd vdd h10 vddint vddint vddint j8 vss vss vss p7 pte24 adc0_se17/ extal1 adc0_se17/ extal1 pte24 can1_tx uart4_tx i2s1_tx_fs ewm_out_ b i2s1_rxd1 pinout k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 79
256 map bga pin name default alt0 alt1 alt2 alt3 alt4 alt5 alt6 alt7 ezport r7 pte25 adc0_se18/ xtal1 adc0_se18/ xtal1 pte25 can1_rx uart4_rx i2s1_tx_bc lk ewm_in i2s1_txd1 m7 pte26 adc3_se5b adc3_se5b pte26 enet_1588 _clkin uart4_cts _b i2s1_txd0 rtc_clko ut usb_clkin k7 pte27 adc3_se4b adc3_se4b pte27 uart4_rts _b i2s1_mclk l7 pte28 adc3_se7a adc3_se7a pte28 t7 pta0 jtag_tclk/ swd_clk/ ezp_clk tsi0_ch1 pta0 uart0_cts _b/ uart0_col _b ftm0_ch5 jtag_tclk/ swd_clk ezp_clk n8 pta1 jtag_tdi/ ezp_di tsi0_ch2 pta1 uart0_rx ftm0_ch6 jtag_tdi ezp_di t8 pta2 jtag_tdo/ trace_sw o/ezp_do tsi0_ch3 pta2 uart0_tx ftm0_ch7 jtag_tdo/ trace_sw o ezp_do p8 pta3 jtag_tms/ swd_dio tsi0_ch4 pta3 uart0_rts _b ftm0_ch0 jtag_tms/ swd_dio r8 pta4/ llwu_p3 nmi_b/ ezp_cs_b tsi0_ch5 pta4/ llwu_p3 ftm0_ch1 nmi_b ezp_cs_b t12 pta5 disabled pta5 usb_clkin ftm0_ch2 rmii0_rxe r/ mii0_rxer cmp2_out i2s0_tx_bc lk jtag_trst _b g10 vdd vdd vdd j9 vss vss vss p9 ptf21 adc3_se6b adc3_se6b ptf21 ftm2_ch1 uart5_rts _b n9 ptf22 adc3_se7b adc3_se7b ptf22 i2c0_scl ftm1_ch0 uart5_cts _b r12 pta6 adc3_se6a adc3_se6a pta6 ulpi_clk ftm0_ch3 i2s1_rxd0 trace_clk out p12 pta7 adc0_se10 adc0_se10 pta7 ulpi_dir ftm0_ch4 i2s1_rx_bc lk trace_d3 n12 pta8 adc0_se11 adc0_se11 pta8 ulpi_nxt ftm1_ch0 i2s1_rx_fs ftm1_qd_p ha trace_d2 t13 pta9 adc3_se5a adc3_se5a pta9 ulpi_stp ftm1_ch1 mii0_rxd3 ftm1_qd_p hb trace_d1 p13 pta10 adc3_se4a adc3_se4a pta10 ulpi_data 0 ftm2_ch0 mii0_rxd2 ftm2_qd_p ha trace_d0 r13 pta11 adc3_se15 adc3_se15 pta11 ulpi_data 1 ftm2_ch1 mii0_rxclk ftm2_qd_p hb m10 pta12 cmp2_in0 cmp2_in0 pta12 can0_tx ftm1_ch0 rmii0_rxd1 /mii0_rxd1 i2s0_txd0 ftm1_qd_p ha n10 pta13/ llwu_p4 cmp2_in1 cmp2_in1 pta13/ llwu_p4 can0_rx ftm1_ch1 rmii0_rxd0 /mii0_rxd0 i2s0_tx_fs ftm1_qd_p hb r11 pta14 cmp3_in0 cmp3_in0 pta14 spi0_pcs0 uart0_tx rmii0_crs_ dv/ mii0_rxdv i2s0_rx_bc lk i2s0_txd1 pinout k61 sub-family data sheet data sheet, rev. 3, 2/2012. 80 preliminary freescale semiconductor, inc.
256 map bga pin name default alt0 alt1 alt2 alt3 alt4 alt5 alt6 alt7 ezport p11 pta15 cmp3_in1 cmp3_in1 pta15 spi0_sck uart0_rx rmii0_txen /mii0_txen i2s0_rxd0 t14 vss vss vss n11 pta16 cmp3_in2 cmp3_in2 pta16 spi0_sout uart0_cts _b/ uart0_col _b rmii0_txd0 /mii0_txd0 i2s0_rx_fs i2s0_rxd1 t11 pta17 adc1_se17 adc1_se17 pta17 spi0_sin uart0_rts _b rmii0_txd1 /mii0_txd1 i2s0_mclk p10 ptf23 adc3_se10 adc3_se10 ptf23 i2c0_sda ftm1_ch1 trace_clk out r10 ptf24 adc3_se11 adc3_se11 ptf24 can1_rx ftm1_qd_p ha trace_d3 r9 ptf25 adc3_se12 adc3_se12 ptf25 can1_tx ftm1_qd_p hb trace_d2 t9 ptf26 adc3_se13 adc3_se13 ptf26 ftm2_qd_p ha trace_d1 t10 ptf27 adc3_se14 adc3_se14 ptf27 ftm2_qd_p hb trace_d0 j7 vdd vdd vdd k8 vss vss vss t15 pta18 extal0 extal0 pta18 ftm0_flt2 ftm_clkin 0 t16 pta19 xtal0 xtal0 pta19 ftm1_flt0 ftm_clkin 1 lptmr0_al t1 r16 reset_b reset_b reset_b n13 pta24 cmp3_in4 cmp3_in4 pta24 ulpi_data 2 mii0_txd2 fb_a29 r14 pta25 cmp3_in5 cmp3_in5 pta25 ulpi_data 3 mii0_txclk fb_a28 m13 pta26 adc2_se15 adc2_se15 pta26 ulpi_data 4 mii0_txd3 fb_a27 r15 pta27 adc2_se14 adc2_se14 pta27 ulpi_data 5 mii0_crs fb_a26 p14 pta28 adc2_se13 adc2_se13 pta28 ulpi_data 6 mii0_txer fb_a25 n14 pta29 adc2_se12 adc2_se12 pta29 ulpi_data 7 mii0_col fb_a24 p16 ptf0 adc2_se11 adc2_se11 ptf0 can0_tx ftm3_ch0 i2s1_rxd1 l13 ptf1 adc2_se10 adc2_se10 ptf1 can0_rx ftm3_ch1 i2s1_rx_bc lk m12 ptb0/ llwu_p5 adc0_se8/ adc1_se8/ adc2_se8/ adc3_se8/ tsi0_ch0 adc0_se8/ adc1_se8/ adc2_se8/ adc3_se8/ tsi0_ch0 ptb0/ llwu_p5 i2c0_scl ftm1_ch0 rmii0_mdio /mii0_mdio ftm1_qd_p ha pinout k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 81
256 map bga pin name default alt0 alt1 alt2 alt3 alt4 alt5 alt6 alt7 ezport m11 ptb1 adc0_se9/ adc1_se9/ adc2_se9/ adc3_se9/ tsi0_ch6 adc0_se9/ adc1_se9/ adc2_se9/ adc3_se9/ tsi0_ch6 ptb1 i2c0_sda ftm1_ch1 rmii0_mdc/ mii0_mdc ftm1_qd_p hb p15 ptb2 adc0_se12/ tsi0_ch7 adc0_se12/ tsi0_ch7 ptb2 i2c0_scl uart0_rts _b enet0_158 8_tmr0 ftm0_flt3 m14 ptb3 adc0_se13/ tsi0_ch8 adc0_se13/ tsi0_ch8 ptb3 i2c0_sda uart0_cts _b/ uart0_col _b enet0_158 8_tmr1 ftm0_flt0 n15 ptb4 adc1_se10 adc1_se10 ptb4 enet0_158 8_tmr2 ftm1_flt0 m15 ptb5 adc1_se11 adc1_se11 ptb5 enet0_158 8_tmr3 ftm2_flt0 l14 ptb6 adc1_se12 adc1_se12 ptb6 fb_ad23 l15 ptb7 adc1_se13 adc1_se13 ptb7 fb_ad22 k14 ptb8 disabled ptb8 uart3_rts _b fb_ad21 k15 ptb9 disabled ptb9 spi1_pcs1 uart3_cts _b fb_ad20 j13 ptb10 adc1_se14 adc1_se14 ptb10 spi1_pcs0 uart3_rx i2s1_tx_bc lk fb_ad19 ftm0_flt1 j14 ptb11 adc1_se15 adc1_se15 ptb11 spi1_sck uart3_tx i2s1_tx_fs fb_ad18 ftm0_flt2 k9 vss vss vss j10 vdd vdd vdd n16 ptf2 adc2_se6a adc2_se6a ptf2 i2c1_scl ftm3_ch2 i2s1_rx_fs m16 ptf3 adc2_se7a adc2_se7a ptf3 i2c1_sda ftm3_ch3 i2s1_rxd0 l16 ptf4 adc2_se4b adc2_se4b ptf4 ftm3_ch4 i2s1_txd0 j15 ptb16 tsi0_ch9 tsi0_ch9 ptb16 spi1_sout uart0_rx i2s1_txd0 fb_ad17 ewm_in h13 ptb17 tsi0_ch10 tsi0_ch10 ptb17 spi1_sin uart0_tx i2s1_txd1 fb_ad16 ewm_out_ b h14 ptb18 tsi0_ch11 tsi0_ch11 ptb18 can0_tx ftm2_ch0 i2s0_tx_bc lk fb_ad15 ftm2_qd_p ha k16 ptf5 adc2_se5b adc2_se5b ptf5 ftm3_ch5 i2s1_tx_fs j16 ptf6 adc2_se6b adc2_se6b ptf6 ftm3_ch6 i2s1_tx_bc lk h15 ptb19 tsi0_ch12 tsi0_ch12 ptb19 can0_rx ftm2_ch1 i2s0_tx_fs fb_oe_b ftm2_qd_p hb g13 ptb20 adc2_se4a adc2_se4a ptb20 spi2_pcs0 fb_ad31/ nfc_data1 5 cmp0_out g14 ptb21 adc2_se5a adc2_se5a ptb21 spi2_sck fb_ad30/ nfc_data1 4 cmp1_out pinout k61 sub-family data sheet data sheet, rev. 3, 2/2012. 82 preliminary freescale semiconductor, inc.
256 map bga pin name default alt0 alt1 alt2 alt3 alt4 alt5 alt6 alt7 ezport g15 ptb22 disabled ptb22 spi2_sout fb_ad29/ nfc_data1 3 cmp2_out h16 ptb23 disabled ptb23 spi2_sin spi0_pcs5 fb_ad28/ nfc_data1 2 cmp3_out g16 ptc0 adc0_se14/ tsi0_ch13 adc0_se14/ tsi0_ch13 ptc0 spi0_pcs4 pdb0_extr g fb_ad14/ nfc_data1 1 i2s0_txd1 f13 ptc1/ llwu_p6 adc0_se15/ tsi0_ch14 adc0_se15/ tsi0_ch14 ptc1/ llwu_p6 spi0_pcs3 uart1_rts _b ftm0_ch0 fb_ad13/ nfc_data1 0 i2s0_txd0 f14 ptc2 adc0_se4b/ cmp1_in0/ tsi0_ch15 adc0_se4b/ cmp1_in0/ tsi0_ch15 ptc2 spi0_pcs2 uart1_cts _b ftm0_ch1 fb_ad12/ nfc_data9 i2s0_tx_fs e13 ptc3/ llwu_p7 cmp1_in1 cmp1_in1 ptc3/ llwu_p7 spi0_pcs1 uart1_rx ftm0_ch2 clkout i2s0_tx_bc lk f15 ptf7 adc2_se7b adc2_se7b ptf7 ftm3_ch7 uart3_rx i2s1_txd1 l9 vss vss vss k10 vdd vdd vdd f16 ptf8 disabled ptf8 ftm3_flt0 uart3_tx i2s1_mclk e14 ptc4/ llwu_p8 disabled ptc4/ llwu_p8 spi0_pcs0 uart1_tx ftm0_ch3 fb_ad11/ nfc_data8 cmp1_out i2s1_tx_bc lk e15 ptc5/ llwu_p9 disabled ptc5/ llwu_p9 spi0_sck lptmr0_al t2 i2s0_rxd0 fb_ad10/ nfc_data7 cmp0_out i2s1_tx_fs f12 ptc6/ llwu_p10 cmp0_in0 cmp0_in0 ptc6/ llwu_p10 spi0_sout pdb0_extr g i2s0_rx_bc lk fb_ad9/ nfc_data6 i2s0_mclk g12 ptc7 cmp0_in1 cmp0_in1 ptc7 spi0_sin usb_sof_ out i2s0_rx_fs fb_ad8/ nfc_data5 h12 ptc8 adc1_se4b/ cmp0_in2 adc1_se4b/ cmp0_in2 ptc8 ftm3_ch4 i2s0_mclk fb_ad7/ nfc_data4 f11 ptc9 adc1_se5b/ cmp0_in3 adc1_se5b/ cmp0_in3 ptc9 ftm3_ch5 i2s0_rx_bc lk fb_ad6/ nfc_data3 ftm2_flt0 g11 ptc10 adc1_se6b adc1_se6b ptc10 i2c1_scl ftm3_ch6 i2s0_rx_fs fb_ad5/ nfc_data2 i2s1_mclk h11 ptc11/ llwu_p11 adc1_se7b adc1_se7b ptc11/ llwu_p11 i2c1_sda ftm3_ch7 i2s0_rxd1 fb_rw_b/ nfc_we j12 ptc12 disabled ptc12 uart4_rts _b fb_ad27 ftm3_flt0 k13 ptc13 disabled ptc13 uart4_cts _b fb_ad26 j11 ptc14 disabled ptc14 uart4_rx fb_ad25 k12 ptf9 cmp2_in4 cmp2_in4 ptf9 uart3_rts _b l12 ptf10 cmp2_in5 cmp2_in5 ptf10 uart3_cts _b f10 ptc15 disabled ptc15 uart4_tx fb_ad24 pinout k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 83
256 map bga pin name default alt0 alt1 alt2 alt3 alt4 alt5 alt6 alt7 ezport n7 vss vss vss l10 vdd vdd vdd k11 ptf11 disabled ptf11 uart2_rts _b l11 ptf12 disabled ptf12 uart2_cts _b f9 ptc16 disabled ptc16 can1_rx uart3_rx enet0_158 8_tmr0 fb_cs5_b/ fb_tsiz1/ fb_be23_16 _b nfc_rb e9 ptc17 disabled ptc17 can1_tx uart3_tx enet0_158 8_tmr1 fb_cs4_b/ fb_tsiz0/ fb_be31_24 _b nfc_ce0_b m9 ptc18 disabled ptc18 uart3_rts _b enet0_158 8_tmr2 fb_tbst_b/ fb_cs2_b/ fb_be15_8_ b nfc_ce1_b m8 ptc19 disabled ptc19 uart3_cts _b enet0_158 8_tmr3 fb_cs3_b/ fb_be7_0_b fb_ta_b l8 ptd0/ llwu_p12 disabled ptd0/ llwu_p12 spi0_pcs0 uart2_rts _b ftm3_ch0 fb_ale/ fb_cs1_b/ fb_ts_b i2s1_rxd1 f8 ptd1 adc0_se5b adc0_se5b ptd1 spi0_sck uart2_cts _b ftm3_ch1 fb_cs0_b i2s1_rxd0 k6 ptd2/ llwu_p13 disabled ptd2/ llwu_p13 spi0_sout uart2_rx ftm3_ch2 fb_ad4 i2s1_rx_fs j6 ptd3 disabled ptd3 spi0_sin uart2_tx ftm3_ch3 fb_ad3 i2s1_rx_bc lk k5 ptd4/ llwu_p14 disabled ptd4/ llwu_p14 spi0_pcs1 uart0_rts _b ftm0_ch4 fb_ad2/ nfc_data1 ewm_in j5 ptd5 adc0_se6b adc0_se6b ptd5 spi0_pcs2 uart0_cts _b/ uart0_col _b ftm0_ch5 fb_ad1/ nfc_data0 ewm_out_ b k4 ptd6/ llwu_p15 adc0_se7b adc0_se7b ptd6/ llwu_p15 spi0_pcs3 uart0_rx ftm0_ch6 fb_ad0 ftm0_flt0 h6 ptf13 disabled ptf13 uart2_rx g6 ptf14 disabled ptf14 uart2_tx t4 vss vss vss e7 ptd7 disabled ptd7 cmt_iro uart0_tx ftm0_ch7 ftm0_flt1 j4 ptd8 disabled ptd8 i2c0_scl uart5_rx fb_a16/ nfc_cle f7 ptd9 disabled ptd9 i2c0_sda uart5_tx fb_a17/ nfc_ale e6 ptd10 disabled ptd10 uart5_rts _b fb_a18/ nfc_re pinout k61 sub-family data sheet data sheet, rev. 3, 2/2012. 84 preliminary freescale semiconductor, inc.
256 map bga pin name default alt0 alt1 alt2 alt3 alt4 alt5 alt6 alt7 ezport g5 ptd11 disabled ptd11 spi2_pcs0 uart5_cts _b sdhc0_clk in fb_a19 f5 ptd12 disabled ptd12 spi2_sck ftm3_flt0 sdhc0_d4 fb_a20 f4 ptd13 disabled ptd13 spi2_sout sdhc0_d5 fb_a21 e5 ptd14 disabled ptd14 spi2_sin sdhc0_d6 fb_a22 e4 ptd15 disabled ptd15 spi2_pcs1 sdhc0_d7 fb_a23 f6 ptf15 disabled ptf15 uart0_rts _b e1 ptf16 disabled ptf16 spi2_pcs0 ftm0_ch3 uart0_cts _b/ uart0_col _b b1 ddr_vdd ddr_vdd ddr_vdd a1 ddr_vss ddr_vss ddr_vss d3 ddr_dqs1 disabled ddr_dqs1 d1 ddr_dq8 disabled ddr_dq8 c1 ddr_dq9 disabled ddr_dq9 b5 ddr_vdd ddr_vdd ddr_vdd a5 ddr_vss ddr_vss ddr_vss d5 ddr_vss ddr_vss ddr_vss c2 ddr_dq10 disabled ddr_dq10 b2 ddr_dq11 disabled ddr_dq11 c3 ddr_dq12 disabled ddr_dq12 b8 ddr_vdd ddr_vdd ddr_vdd a12 ddr_vss ddr_vss ddr_vss c4 ddr_dq13 disabled ddr_dq13 b3 ddr_dq14 disabled ddr_dq14 a2 ddr_dq15 disabled ddr_dq15 a3 ddr_dm1 disabled ddr_dm1 e8 ddr_vss ddr_vss ddr_vss b12 ddr_vdd ddr_vdd ddr_vdd a16 ddr_vss ddr_vss ddr_vss c6 ddr_vref ddr_vref ddr_vref c5 ddr_dq0 disabled ddr_dq0 b4 ddr_dq1 disabled ddr_dq1 a4 ddr_dq2 disabled ddr_dq2 c16 ddr_vdd ddr_vdd ddr_vdd c7 ddr_vss ddr_vss ddr_vss b6 ddr_dq3 disabled ddr_dq3 d6 ddr_dq4 disabled ddr_dq4 a6 ddr_dq5 disabled ddr_dq5 a7 ddr_odt disabled ddr_odt pinout k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 85
256 map bga pin name default alt0 alt1 alt2 alt3 alt4 alt5 alt6 alt7 ezport e11 ddr_vss ddr_vss ddr_vss d2 ddr_vdd ddr_vdd ddr_vdd c9 ddr_vss ddr_vss ddr_vss b7 ddr_dq6 disabled ddr_dq6 a8 ddr_dq7 disabled ddr_dq7 c8 ddr_dqs0 disabled ddr_dqs0 d9 ddr_dm0 disabled ddr_dm0 d4 ddr_vdd ddr_vdd ddr_vdd c14 ddr_vss ddr_vss ddr_vss a9 ddr_ba0 disabled ddr_ba0 b10 ddr_ba1 disabled ddr_ba1 b9 ddr_ba2 disabled ddr_ba2 a10 ddr_ckb disabled ddr_ckb a11 ddr_ck disabled ddr_ck d7 ddr_vdd ddr_vdd ddr_vdd d8 ddr_vss ddr_vss ddr_vss d10 ddr_a0 disabled ddr_a0 c11 ddr_a1 disabled ddr_a1 b11 ddr_a2 disabled ddr_a2 c12 ddr_a3 disabled ddr_a3 e10 ddr_vdd ddr_vdd ddr_vdd d12 ddr_vss ddr_vss ddr_vss c10 ddr_a4 disabled ddr_a4 a13 ddr_a5 disabled ddr_a5 a14 ddr_a6 disabled ddr_a6 d11 ddr_a7 disabled ddr_a7 a15 ddr_a8 disabled ddr_a8 e12 ddr_vdd ddr_vdd ddr_vdd e3 ddr_vss ddr_vss ddr_vss b16 ddr_cke disabled ddr_cke b15 ddr_a9 disabled ddr_a9 b13 ddr_a10 disabled ddr_a10 b14 ddr_a11 disabled ddr_a11 c15 ddr_a12 disabled ddr_a12 d16 ddr_a13 disabled ddr_a13 d15 ddr_a14 disabled ddr_a14 e16 ddr_ras_ b disabled ddr_ras_ b c13 ddr_cas_ b disabled ddr_cas_ b d14 ddr_cs_b disabled ddr_cs_b pinout k61 sub-family data sheet data sheet, rev. 3, 2/2012. 86 preliminary freescale semiconductor, inc.
256 map bga pin name default alt0 alt1 alt2 alt3 alt4 alt5 alt6 alt7 ezport d13 ddr_we_b disabled ddr_we_b 8.2 k61 pinouts the below figure shows the pinout diagram for the devices supported by this document. many signals may be multiplexed onto a single pin. to determine what signals can be used on which pin, see the previous section. pinout k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 87
1 a ddr_vss b ddr_vdd c ddr_dq9 d ddr_dq8 e ptf16 f ptf17 g ptf18 h ptf19 j pte9 k pte11 l vout33 m usb0_dp n pga2_dp/ p pga3_dp/ r pga0_dp/ 1 t pga1_dp/ 2 ddr_dq15 ddr_dq11 ddr_dq10 ddr_vdd pte0 pte1/ pte3 pte6 pte10 pte17 vss usb0_dm pga2_dm/ pga3_dm/ pga0_dm/ 2 pga1_dm/ 3 ddr_dm1 ddr_dq14 ddr_dq12 ddr_dqs1 ddr_vss pte2/ pte4/ pte7 pte16 pte12 vregin pte19 adc0_se16/ adc1_se16/ dac0_out/ 3 vref_out/ 4 ddr_dq2 ddr_dq1 ddr_dq13 ddr_vdd ptd15 ptd13 pte5 pte8 ptd8 ptd6/ pte18 vrefl vssa vrefh dac1_out/ 4 vss 5 ddr_vss ddr_vdd ddr_dq0 ddr_vss ptd14 ptd12 ptd11 ptf20 ptd5 ptd4/ tamper1 tamper0/ vdda vbat tamper3 5 extal32 6 ddr_dq5 ddr_dq3 ddr_vref ddr_dq4 ptd10 ptf15 ptf14 ptf13 ptd3 ptd2/ tamper2 tamper7 tamper6 tamper4 tamper5 6 xtal32 7 ddr_odt ddr_dq6 ddr_vss ddr_vdd ptd7 ptd9 vdd vddint vdd pte27 pte28 pte26 vss pte24 pte25 7 pta0 8 ddr_dq7 ddr_vdd ddr_dqs0 ddr_vss ddr_vss ptd1 vdd vss vss vss ptd0/ ptc19 pta1 pta3 pta4/ 8 pta2 9 ddr_ba0 ddr_ba2 ddr_vss ddr_dm0 ptc17 ptc16 vdd vss vss vss vss ptc18 ptf22 ptf21 ptf25 9 ptf26 10 ddr_ckb ddr_ba1 ddr_a4 ddr_a0 ddr_vdd ptc15 vdd vddint vdd vdd vdd pta12 pta13/ ptf23 ptf24 10 ptf27 11 ddr_ck ddr_a2 ddr_a1 ddr_a7 ddr_vss ptc9 ptc10 ptc11/ ptc14 ptf11 ptf12 ptb1 pta16 pta15 pta14 11 pta17 12 ddr_vss ddr_vdd ddr_a3 ddr_vss ddr_vdd ptc6/ ptc7 ptc8 ptc12 ptf9 ptf10 ptb0/ pta8 pta7 pta6 12 pta5 13 ddr_a5 ddr_a10 ddr_ ddr_we_b ptc3/ ptc1/ ptb20 ptb17 ptb10 ptc13 ptf1 pta26 pta24 pta10 pta11 13 pta9 14 ddr_a6 ddr_a11 ddr_vss ddr_cs_b ptc4/ ptc2 ptb21 ptb18 ptb11 ptb8 ptb6 ptb3 pta29 pta28 pta25 14 vss 15 ddr_a8 ddr_a9 ddr_a12 ddr_a14 ptc5/ ptf7 ptb22 ptb19 ptb16 ptb9 ptb7 ptb5 ptb4 ptb2 pta27 15 pta18 16 a ddr_vss b ddr_cke c ddr_vdd d ddr_a13 e ddr_ f ptf8 g ptc0 h ptb23 j ptf6 k ptf5 l ptf4 m ptf3 n ptf2 p ptf0 r reset_b 16 t pta19 cas_b llwu_p7 llwu_p8 llwu_p9 ras_b llwu_p0 llwu_p1 llwu_p10 llwu_p6 llwu_p2 llwu_p11 llwu_p15 llwu_p14 llwu_p13 llwu_p12 rtc_ wakeup_b llwu_p5 cmp1_in2/ adc0_se21 adc2_dp0/ adc3_dp3/ adc0_dp1 adc2_dm0/ adc3_dm3/ adc0_dm1 llwu_p4 cmp2_in2/ adc0_se22 adc3_dm0/ adc2_dm3/ adc1_dm1 adc3_dp0/ adc2_dp3/ adc1_dp1 llwu_p3 cmp0_in4/ cmp2_in3/ adc1_se23 cmp1_in3/ adc0_se23 adc0_dm0/ adc1_dm3 adc0_dp0/ adc1_dp3 cmp1_in5/ cmp0_in5/ adc1_se18 adc1_dm0/ adc0_dm3 adc1_dp0/ adc0_dp3 figure 38. k61 256 mapbga pinout diagram 9 revision history the following table provides a revision history for this document. revision history k61 sub-family data sheet data sheet, rev. 3, 2/2012. 88 preliminary freescale semiconductor, inc.
table 53. revision history rev. no. date substantial changes 1 6/2011 initial public revision. corrected usb conditions. 2 11/2011 ? added ac electrical specifications. ? updated part identification section for 120 mhz cpu frequency. ? updated voltage and current operating ratings section. ? updated voltage and current operating requirements section. ? updated lvd and por operating requirements section. ? updated voltage and current operating behaviors section. ? updated power mode transition operating behaviors section. ? updated power consumption operating behaviors section. ? in run mode supply current vs. core frequency section, added run and vlpr modes supply current vs. core frequency diagrams. ? in device clock specifications section, updated flash clock frequency and ddr clock frequency. ? updated thermal attributes. ? in mcg specifications section, updated total deviation of trimmed average dco output frequency, pll reference frequency range, and lock detector detection time. ? in oscillator frequency specifications section, updated crystal startup time 32 khz. ? updated nfc specifications section. ? updated ddr controller specifications section. ? in dryice tamper electrical specifications section, updated supply current. ? in dspi switching specifications section, updated master and slave modes frequency of operation for limited voltage and full voltage ranges. ? in i2s/sai switching specifications section, updated cycle time for master and slave modes. ? in usb dcd electrical specifications section, updated data detect voltage. ? in tsi electrical specifications, updated reference oscillator frequency. ? updated pinouts. ? updated pinouts. revision history k61 sub-family data sheet data sheet, rev. 3, 2/2012. freescale semiconductor, inc. preliminary 89
how to reach us: home page: www.freescale.com web support: http://www.freescale.com/support usa/europe or locations not listed: freescale semiconductor technical information center, el516 2100 east elliot road tempe, arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support europe, middle east, and africa: freescale halbleiter deutschland gmbh technical information center schatzbogen 7 81829 muenchen, germany +44 1296 380 456 (english) +46 8 52200080 (english) +49 89 92103 559 (german) +33 1 69 35 48 48 (french) www.freescale.com/support japan: freescale semiconductor japan ltd. headquarters arco tower 15f 1-8-1, shimo-meguro, meguro-ku, tokyo 153-0064 japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com asia/pacific: freescale semiconductor china ltd. exchange building 23f no. 118 jianguo road chaoyang district beijing 100022 china +86 10 5879 8000 support.asia@freescale.com document number: K61P256M120SF3 rev. 3, 2/2012 preliminary information in this document is provided solely to enable system and software implementers to use freescale semiconductors products. there are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. freescale semiconductor reserves the right to make changes without further notice to any products herein. freescale semiconductor makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does freescale semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any liability, including without limitation consequential or incidental damages. "typical" parameters that may be provided in freescale semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. all operating parameters, including "typicals", must be validated for each customer application by customer's technical experts. freescale semiconductor does not convey any license under its patent rights nor the rights of others. freescale semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which failure of the freescale semiconductor product could create a situation where personal injury or death may occur. should buyer purchase or use freescale semiconductor products for any such unintended or unauthorized application, buyer shall indemnify freescale semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claims alleges that freescale semiconductor was negligent regarding the design or manufacture of the part. rohs-compliant and/or pb-free versions of freescale products have the functionality and electrical characteristics as their non-rohs-complaint and/or non-pb-free counterparts. for further information, see http://www.freescale.com or contact your freescale sales representative. for information on freescale's environmental products program, go to http://www.freescale.com/epp. freescale? and the freescale logo are trademarks of freescale semiconductor, inc. all other product or service names are the property of their respective owners. ? 2012 freescale semiconductor, inc.


▲Up To Search▲   

 
Price & Availability of K61P256M120SF3

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X